
Page 1

用 Tcl 定制 Vivado 设计实现流程

上一篇《Tcl 在 Vivado 中的应用》介绍了 Tcl 的基本语法以及如何利用 Tcl 在 Vivado

中定位目标。其实 Tcl 在 Vivado 中还有很多延展应用，接下来我们就来讨论如何利用 Tcl

语言的灵活性和可扩展性，在 Vivado 中实现定制化的 FPGA 设计流程。

基本的 FPGA 设计实现流程

FPGA 的设计流程简单来讲，就是从源代码到比特流文件的实现过程。大体上跟 IC

设计流程类似，可以分为前端设计和后端设计。其中前端设计是把源代码综合为对应的门

级网表的过程，而后端设计则是把门级网表布局布线到芯片上最终实现的过程。

以下两图分别表示 ISE 和 Vivado 的基本设计流程：

ISE 中设计实现的每一步都是相对独立的过程，数据模型各不相同，用户需要维护不

同的输入文件，例如约束等，输出文件也不是标准网表格式，并且形式各异，导致整体运

行时间过长，冗余文件较多。

Page 2

Vivado 中则统一了约束格式和数据模型，在设计实现的任何一个阶段都支持 XDC 约

束，可以生成时序报告，在每一步都能输出包含有网表、约束以及布局布线信息（如果有）

的设计检查点（DCP）文件，大大缩短了运行时间。

从使用方式上来讲，Vivado 支持工程模式（Project Based Mode）和非工程模式

（None Project Mode）两种，且都能通过 Tcl 脚本批处理运行，或是在 Vivado 图形化界

面 IDE 中交互运行和调试。

工程模式

工程模式的关键优势在于可以通过在 Vivado 中创建工程的方式管理整个设计流程，

包括工程文件的位置、阶段性关键报告的生成、重要数据的输出和存储等。

如下左图所示，用户建立了一个 Vivado 工程后，工具会自动创建相应的.xpr 工程文

件，并在工程文件所在的位置同层创建相应的几个目录，包括<prj_name>.cache、

<prj_name>.data、<prj_name>.runs 和<prj_name>.srcs 等等（不同版本可能有稍许差异），

分别用于存储运行工程过程中产生的数据、输出的文件和报告以及工程的输入源文件（包

含约束文件）等。

如下右图所示，在 Vivado IDE 中还可以一键式运行整个设计流程。这些预置的命令

按钮就放置在工具最左边的侧栏：Flow Navigator 。不同按钮对应不同的实现过程，其中

在后端实现阶段，还可以用右键调出详细分步命令，指引工具具体执行实现的哪一步。

Page 3

特别需要指出的是 Flow Navigator 只有在 Vivado IDE 中打开.xpr 工程文件才会显示，

如果打开的是设计检查点.dcp 文件（不论是工程模式或是非工程模式产生的 dcp）都不会

显示这个侧栏。

非工程模式

非工程模式下，由于不会创建工程，用户就需要自己管理设计源文件和设计过程。

源文件只能从当前位置访问，在设计实现过程中的每一步，数据和运行结果都存在于

Vivado 分配到的机器内存中，在用户不主动输出的情况下，不会存储到硬盘中。

简单来讲，非工程模式提供了一种类似 ASIC 设计的流程，用户拥有绝对的自由，可

以完全掌控设计实现流程，但也需要用户对设计实现的过程和数据，尤其对文件输出和管

理全权负责，包括何时、何地、输出怎样的文件等等。

使用非工程模式管理输入输出文件、进行设计实现都需要使用 Tcl 脚本，但这并不代

表非工程模式不支持图形化界面。非工程模式下产生的.dcp 文件一样可以在 Vivdao IDE 中

打开，继而产生各种报告，进行交互式调试等各种在图形化下更便捷直观的操作。这是一

个常见误区，就像很多人误认为工程模式下不支持 Tcl 脚本运行是一个道理。但两种模式

支持的 Tcl 命令确实是完全不同的，使用起来也不能混淆。

下图所示是同一个设计（Vivado 自带的 Example Design）采用两种模式实现所需使

用的不同脚本，更详细的内容可以在 UG975 和 UG835 中找到。需要注意的是，工程模式

下的 Tcl 脚本更简洁，但并不是最底层的 Tcl 命令，实际执行一条相当于执行非工程模式

下的数条 Tcl 命令。

Page 4

Vivado 支持的两种 Tcl 脚本

Page 5

Tcl 对图形化的补充

相信对大部分 FPGA 工程设计人员来说，图形化界面仍旧是最熟悉的操作环境，也

是设计实现的首选。在 Xilinx 推出全面支持 Tcl 的 Vivado 后，这一点依然没有改变，但我

们要指出的是，即使是在图形化界面上跑设计，仍然可以充分利用 Tcl 的优势。在 Vivado

IDE 上运行 Tcl 脚本主要有以下几个渠道。

Tcl Console

Vivado IDE 的最下方有一个 Tcl Console，在运行过程中允许用户输入 Tcl/XDC 命令

或是 source 预先写好的 Tcl 脚本，返回值会即时显示在这个对话框。

举例来说，设计调试过程中，需要将一些约束应用在某些网表目标上（具体可参照

《Tcl 在 Vivado 中的应用》所示），推荐的做法就是在 IDE 中打开.dcp 然后在 Tcl Console

中输入相应的 Tcl/XDC 命令，验证返回值，碰到问题可以直接修改，直到找到正确合适的

命令。然后可以记录这些命令，并存入 XDC 文件中以备下次实现时使用。

还有一种情况是，预先读入的 XDC 中有些约束需要修改，或是缺失了某些重要约束。

不同于 ISE 中必须修改 UCF 重跑设计的做法，在 Vivado 中，我们可以充分利用 Tcl/XDC

的优势， 在 Tcl Console 中输入新的 Tcl/XDC，无需重跑设计，只要运行时序报告来验证。

当然，如果能重跑设计，效果会更好，但是这种方法在早期设计阶段提供了一种快速进行

交互式验证的可能，保证了更快地设计迭代，大大提升了效率。

另外，通过某些 Tcl 命令（例如 show_objects、select_objects 等等）的帮助，我们还

可以利用 Tcl Console 与时序报告、RTL 和门级网表以及布局布线后的网表之间进行交互

调试，极大发挥 Vivado IDE 的优势。

Hook Scripts

Vivado IDE 中内置了 tcl.pre 和 tcl.post，用户可以在 Synthesis 和 Implementation 的设

置窗口中找到。设计实现的每一步都有这样两个位置可供用户加入自己的 Tcl 脚本。

Page 6

tcl.pre 表示当前这步之前 Vivado 会主动 source 的 Tcl 脚本，tcl.post 表示这步之后会

source 的脚本。Tcl 脚本必须事先写好，然后在上图所示的设置界面由用户使用弹出窗口

指定到脚本所在位置。

这些就是所谓的“钩子”脚本，正是有了这样的脚本，我们才得以在图形化界面上

既享有一键式执行的便利，又充分利用 Tcl 带来的扩展性。比较常见的使用场景是，在某

个步骤后多产生几个特别的报告，或是在布线前再跑几次物理优化等。

Customer Commands

Vivado IDE 中还有一个扩展功能，允许用户把事先创建好的 Tcl 脚本以定制化命令的

方式加入图形化界面，成为一个按钮，方便快速执行。这个功能常常用来报告特定的时序

信息、修改网表内容、实现 ECO 等等。

Page 7

用 Tcl 定制实现流程

综上所述，标准的 FPGA 设计实现流程完全可以通过 Vivado IDE 一键式执行，如果

仅需要少量扩展，通过前述钩子脚本等几种方法也完全可以做到。若是这些方法都不能满

足需求，还可以使用 Tcl 脚本来跑设计，从而实现设计流程的全定制。

注：以下讨论的几种实现方案中仅包含后端实现具体步骤的区别，而且只列出非工

程模式下对应的 Tcl 命令。

右图所示是 Vivado 中设计实现的基本流程，

蓝色部分表示实现的基本步骤（尽管 opt_design 这

一步理论上不是必选项，但仍强烈建议用户执行），

对应 Implementation 的 Default 策略。黄色部分表示

可选择执行的部分，不同的实现策略中配置不同。

这里不会讨论那些图形化界面中可选的策略，

不同策略有何侧重，具体如何配置我们将在另外一

篇关于 Vivado 策略选择的文章中详细描述。

我们要展示的是如何对设计流程进行改动来更

好的满足设计需求，这些动作往往只能通过 Tcl 脚

本来实现。

充分利用物理优化

物理优化即 phys_opt_design 是在后端通过复制、移动寄存器来降扇出和 retiming，从

而进行时序优化的重要手段，一般在布局和布线之间运行，从 Vivado 2014.1 开始，还支

持布局后的物理优化。

很多用户会在 Vivado 中选中 phys_opt_design，但往往不知道这一步其实可以运行多

次，并且可以选择不同的 directive 来有侧重的优化时序。

比如，我们可以写这样一个 Tcl 脚本，在布局后，使用不同的 directive 或选项来跑多

次物理优化，甚至可以再多运行一次物理优化，专门针对那些事先通过 get_nets 命令找到

并定义为 highfanout_nets 的高扇出网络。具体 directive 的含义可以通过 UG835、UG904 或

phys_opt_design -help 命令查询。

Page 8

布局布线之间的多次物理优化不会恶化时序，但会增加额外的运行时间，也有可能

出现时序完全没有得到优化的结果。布线后的物理优化有时候会恶化 THS，所以请一定记

得每一步后都运行 report_timing_summary，并且通过 write_checkpoint 写出一个.dcp 文件

来保留阶段性结果。这一步的结果不理想就可以及时退回到上一步的.dcp 继续进行。

闭环设计流程

通常的 FPGA 设计流程是一个开环系统，从前到后依次执行。但 Vivado 中提供了一

种可能，用户可以通过 place_design -post_place_opt 在已经完成布局布线的设计上再做一

次布局布线，从而形成一个有了反馈信息的闭环系统。这次因为有了前一次布线后的真实

连线延迟信息，布局的针对性更好，并且只会基于时序不满足的路径进行重布局而不会改

变大部分已经存在的布局信息，之后的布线过程也是增量流程。

这一过程所需的运行时间较短，是一种很有针对性的时序优化方案。可以通过 Tcl 写

一个循环多次迭代运行，但需留意每次的时序报告，若出现时序恶化就应及时停止。

synth_design

opt_design

place_design

phys_opt_design -directive AggressiveExplore

phys_opt_design -directive AggressiveFanoutOpt

phys_opt_design -force_replication_on_nets $highfanout_nets

phys_opt_design -retime

route_design

phys_opt_design

synth_design

opt_design

place_design

phys_opt_design

route_design

for {set i 0} {$i<=3} {incr i} {
place_design -post_place_opt
route_design
report_timing_summary -file $i.rpt
write_checkpoint -force post_place_opted.dcp
}

Page 9

增量设计流程

Vivado 中的增量设计也是一个不得不提的功能。当设计进行到后期，每次运行改动

很小，在开始后端实现前读入的设计网表具有较高相似度的情况下，推荐使用 Vivado 的

增量布局布线功能。

如左图所示，运行增量流程的前提是有一

个已经完成布局布线的.dcp 文件，并以此用来作

为新的布局布线的参考。

运行过程中，Vivado 会重新利用已有的布

局布线数据来缩短运行时间，并生成可预测的结

果。当设计有 95% 以上的相似度时，增量布局

布线的运行时间会比一般布局布线平均缩短 2 倍。

若相似度低于 80%，则使用增量布局布线只有

很小的优势或者基本没有优势。

除了缩短运行时间外，增量布局布线对没有发生变化的设计部分造成的破坏也很小，

因此能减少时序变化，最大限度保留时序结果，所以一般要求用做参考的.dcp 文件必须是

一个完全时序收敛的设计。

参考点.dcp 文件可以在 Vivado IDE 的 Implementation 设置中指定，也可以在 Tcl 脚本

中用 read_checkpoint -incremental 读入。特别需要指出的是，在工程模式中，如要在不新

建一个 impl 实现的情况下使用上一次运行的结果作为参考点，必须将其另存到这次运行

目录之外的位置，否则会因冲突而报错。

以上用 Tcl 定制 Vivado 设计实现流程的讨论就到这里，关于更细节的 Tcl 使用场景，

包括 ECO 流程等，会另外展开，敬请关注 Xilinx 官方网站和中文论坛上的更多技术文章。

Ally Zhou 2014-11-11 于 Xilinx 上海 Office

	基本的FPGA设计实现流程
	工程模式
	非工程模式
	Vivado支持的两种Tcl脚本

	Tcl对图形化的补充
	Tcl Console
	Hook Scripts
	Customer Commands

	用Tcl定制实现流程
	充分利用物理优化
	闭环设计流程

	增量设计流程

