
XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 1

© Copyright 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S are trademarks of ARM in the EU and other countries. HDMI, HDMI logo, and High-Definition
Multimedia Interface are trademarks of HDMI Licensing LLC. All other trademarks are the property of their respective owners.

Summary The Zynq®-7000 All Programmable SoC (AP SoC) integrates a system on chip (SoC) and
programmable logic (PL). The boot mechanism, unlike previous Xilinx devices, is processor
driven.This application note shows how to boot the Zynq device securely using QSPI and SD
modes. The optimal use of RSA authentication and AES encryption for different security
requirements is described. A method of handling RSA keys securely is provided. Multiboot
examples show how to boot a golden image if the boot of an image fails. Examples show how
to generate and program keys. Applications using Zynq security features are discussed.

Included
Systems

The reference systems listed in this section are available in the following link:

https://secure.xilinx.com/webreg/clickthrough.do?cid=339774

• zc702_u-boot

• zc702_linux_trd

• zc702_secure_key_driver

• zc702_secure_key (includes xil_rsa_sign)

• zc702_multiboot

• zc702_jtag_en

• zc702_data

• zc702_udf

Introduction Because of the value of intellectual property (IP), and because the incremental effort and cost
to boot securely is small, secure boot should be used to boot Zynq devices. Secure boot of
Zynq devices uses public and private cryptographic algorithms. This application note provides
the concepts, tools, and methods to implement a secure boot. It shows how to create a secure
embedded system, and how to generate, program, and manage the public and private
cryptographic keys.

To build and boot a secure embedded Linux system quickly, skip to the section Booting the TRD
Securely, and use the zc702_linux_trd system. Secure boot does not require programmable
logic resources which are otherwise available to the user. The boot time of a secure Linux
system is approximately the same as a non-secure system.

Application Note: Zynq-7000 AP SoC

XAPP1175 (v1.0) September 12,
2013

Secure Boot of Zynq-7000 All Programmable
SoC
Author: Lester Sanders

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=339774

Introduction

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 2

How to Read this Document

Figure 1 shows the secure boot topics discussed.

The Boot Architecture, Boot Process, AES Encryption and RSA Authentication, Security in
Embedded Devices, and Secure System Development sections provide background
information on Zynq secure boot. Users familiar with booting Zynq devices on the zc702 board
can skip to the Booting the TRD Securely section and quickly boot the zc702_linux_trd system.

The Building and Booting a Secure System section shows new users how to build and boot a
secure system using the Xilinx graphical user interface (GUI). The system built is not used in
other sections, so readers experienced with Xilinx tools can skip this section. RSA
authentication is not available using the 14.6 Bootgen GUI. The Bootgen GUI that supports all
security features is scheduled to be provided in the 14.7 release.

The Creating a Secure Boot Image section shows how to build custom secure embedded
systems. A wide variety of use cases are supported.

The Generating and Programming Keys section shows how to create AES and RSA keys, and
how to program the control functions and keys into Zynq devices for a secure embedded
system.

The Advanced Key Management Options section shows how to protect RSA keys.

The Secure Embedded Systems Applications provides examples using the included reference
systems. The Multiboot section develops systems which combine security and multiboot. The
zc702_data system shows how to load data into Zynq devices securely. The zc702_jtag_en
system discusses the use of JTAG after a secure boot.

X-Ref Target - Figure 1

Figure 1: Topics in Secure Boot
XAPP1175 01 070813

Quickly Building and Booting

Zynq Security Components

a Secure Embedded Linux System

Creating Secure Embedded Systems

Generating and Programming
 Cryptographic Keys

Secure Embedded Systems Applications

Advanced Key Management Options

http://www.xilinx.com

Hardware and Software Requirements

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 3

Hardware and
Software
Requirements

The hardware requirements for the reference systems are as follows:

• ZC702 Evaluation Board with Revision C xc7020 silicon

• AC Power Adaptor (12 VDC)

• USB Type-A to USB Mini-B Cable (for UART communication)

• Xilinx Platform Cable or Digilent USB Type-A to USB Micro B cable for programming and
debugging using JTAG

• Secure Digital Multimedia Card (SD) flash card

• Ethernet cable to connect the target board with host machine (optional)

• Xilinx Platform Studio 14.6

• Xilinx Integrated Software Environment (ISE) 14.6

• Xilinx Vivado® 2013.2

Note: The Xilinx Bootgen software, along with the First Stage Boot Loader, are the principle tools used
in secure boot. Bootgen is provided in the Xilinx Software Development Kit (SDK) tool. SDK is
independently downloadable from the Xilinx website. In the SDK 14.6 release, the GUI provided by
Bootgen does not support all of the advanced functions of Bootgen. For the 14.6 release, the advanced
functions must be implemented using the command line interface. The secure boot functions are provided
independent of whether the system is developed using ISE or Vivado.

Boot
Architecture

This section provides an overview of the hardware and software components used in the boot
process.

Hardware Components Used in Boot

The two functional blocks in Zynq devices are the processing system (PS) and programmable
logic (PL). The PS contains the ARM Cortex A9 MPCore and ten (x2) hard IP peripherals. The
PL is the FPGA.

The hardware components used to boot are the CPU, system level control register (SLCR),
non-volatile memory (NVM), secure storage, JTAG, AES/HMAC, On Chip Memory (OCM), Dual
Data Rate Random Access Memory (DDR), and BootROM. Figure 2 is a diagram of the
hardware components used in boot. The NVM and DDR memory are off chip. Booting typically
uses only one NVM type.

http://www.xilinx.com

Boot Architecture

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 4

Central Processing Unit

The ARM Cortex-A9 MPcore contains two central processing units (CPUs). CPU0 is used for
boot. The CPU controls boot and other operations by writing/reading registers in the Device
Configuration (DEVCFG) and other System Level Control Registers.

System Level Control Register

The System Level Control Register (SLCR) consists of approximately 150 registers. The
registers used in boot are the Boot Mode, PS Reset Control, FPGA Reset, Reboot Status,
Reset Reason, PS Level Shifter, Control Register, Miscellaneous Register, Reboot Status
Register, Lock, Configuration, and Interrupt registers. The registers for Direct Memory Access
Controller (DMAC), NVM, and DDR controllers used in boot are also in the SLCR, but these
generally do not require modification for boot.

Device Configuration Interface

The Device Configuration Interface contains the direct memory access controller DMAC used
in boot. The DMAC transfers partitions from one memory, usually NVM, to another memory,
usually DDR, at a high transfer rate. The DMAC interfaces to the PS using the AXI bus, and to
the PL using the PCAP interface.

X-Ref Target - Figure 2

Figure 2: Zynq-7000 AP SoC Hardware Components Used in Boot

CPU

OCM

SD

NAND

NOR

QSPI

DDR
Controller

Processing System

Programmable Logic

Device Configuration Interface
AXI

PCAP

DMA
Controller

Secure
Vault

Boot
ROM

AES HMAC

JTAG

DDR

SD

NAND

NOR

QSPI

eFuse Array

Controllers

DAP

SLCR

Config
Registers

Config
Memory

eFUSE
SHA256(PPK)

XAPP1175_03_052813

BBRAM

Decryptor

http://www.xilinx.com

Boot Architecture

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 5

Secure Storage

Secure storage is on chip memory which is inaccessible to an adversary. The memory resides
within the security perimeter of Zynq devices. At build time, the designer controls input/outputs
(IOs) and internal switches to restrict access to Zynq device internal components. The OCM,
L1 and L2 cache, AXI block RAM, PL configuration memory, BBRAM, and eFUSE array are
secure storage in Zynq devices.

Nonvolatile Memory

The types of NVM used to boot Zynq devices are Secure Digital (SD), Quad Serial Peripheral
Interface (QSPI), NAND, and NOR. The ZC702 and ZC706 Evaluation Boards support SD and
QSPI, but not NAND and NOR NVM.

BootROM

The BootROM is 128K mask programmed boot Read Only Memory (BootROM) which contains
the BootROM code. The BootROM is not visible to the user or writable. The BootROM code
reads the Boot Mode Register, and initializes essential clocks and NVM at startup or power on
reset. For all boot modes except JTAG, the BootROM code uses the memory controller to copy
the FSBL partition from the specified NVM to the OCM.

On Chip Memory

The OCM is 256K random access memory (RAM). The initial function of the OCM is to store the
first stage boot loader (FSBL) when the Zynq device is booted. The maximum allowable size of
the FSBL is 192K. Since the OCM has no address or data lines at Zynq device pins, OCM is
secure storage. The OCM can be used as secure storage for sensitive software after boot.
OCM is very fast memory. After boot, the full 256K OCM is available.

AXI Block RAM

The AXI BRAM is PL RAM. It is not used in boot. It provides secure storage for sensitive
software or data. AXI BRAM is used by both the ARM and MicroBlaze CPUs.

eFUSE Array

The PL eFUSE array is on chip one time programmable (OTP) NVM. The eFUSE array stores
the 256-bit AES key. It is also used to control security functions, including enabling/disabling the
JTAG port. The PS eFUSEs store the RSA_Enable bit and the hash of the Primary Public Key
(PPK) used in RSA authentication.

Battery Backed Up RAM

The Battery Backed RAM (BBRAM) is an on chip alternative to eFUSE for nonvolatile AES key
storage. BBRAM is reprogrammable and zeroizable NVM. BBRAM is NVM when an off-chip
battery is connected to the Zynq device. The ZC702 board provides the battery, the Zed board
does not. The BBRAM can be used to store the AES key when a battery is not attached, but it
is volatile.

AES/HMAC

The Advanced Encryption Standard (AES) is used for private key encryption/decryption. The
Hashed Message Authentication Code (HMAC) provides private key authentication using the
SHA-256 hash function.

AES cryptography is used by Zynq devices to provide confidentiality. The Zynq device contains
a hardened AES decryption engine which is coupled to the HMAC engine. The AES
decryption/HMAC authentication cannot be decoupled. The SDK Bootgen tool encrypts the
software in the software development process, at the manufacturing end. Decryption is done in
the fielded embedded device. The AES decryption uses a private key programmed into either
eFUSE or BBRAM.

http://www.xilinx.com

Boot Architecture

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 6

JTAG/DAP Boundary Scan Chain

The JTAG chain is a boundary scan chain used by the PL. The DAP is a boundary scan chain
used by the PS. The two chains can be cascaded or used independently. The JTAG chain is
used to load PS and PL code, program the keys in eFUSE and BBRAM, and for debugging.

Software Components Used in Boot

The Xilinx ISE Design Suite is used for system development. The ISE Design Suite includes
PlanAhead, Xilinx Platform Studio (XPS), Software Development Kit (SDK), Bitgen, Bootgen,
and iMPACT. The Integrated System Environment (ISE) and Vivado design suites are used to
implement VHDL/Verilog code. SDK is used to compile C code, generate a boot image, load
the boot image, and debug the software and hardware.

SDK is used to create software projects, and download and debug the projects. SDK runs on a
PC under Windows or Linux. The software programs which run on Zynq devices and are used
in boot are the BootROM code, FSBL, ps7_init, U-Boot, and the DEVCFG code.

Boot Header

The Boot Header defines characteristics of the FSBL partition. The image ID and Header
Checksum fields in the Boot Header allow the BootROM code to run integrity checks. The
Encryption Status field specifies whether the FSBL is non-secure or secure, and if secure,
whether the key source is eFUSE or BBRAM. The Boot Header format is provided in the
Zynq-7000 AP SoC Technical Reference Manual (UG585) [Ref 1]. For additional information
see Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 2].

Bitgen

Bitgen generates an unencrypted bit file for the bitstream partition. Bitgen is not used for
encryption in Zynq devices.

Bootgen

Bootgen is a SDK tool which generates the image for booting. Bootgen generates the image
which is loaded into NVM. Bootgen accepts a user generated Bootgen Image Format (BIF) file
that lists the partitions which are to be included in the image. Bootgen outputs a single image
file in MCS or BIN format. Bootgen encrypts and signs partitions, using AES and RSA
algorithms respectively.

Note: The 14.6 Bootgen GUI in SDK provides limited support of security functions. In
SDK 14.6, Bootgen is used at the command line for RSA authentication and/or mixed
encrypted/unencrypted partitions. In a later SDK release, the Bootgen GUI will support RSA
authentication and mixed encrypted/unencrypted partitions.

Secure Key Driver

The Secure Key Driver software programs the PS and PL eFUSE array. The Secure Key Driver
runs on Zynq devices. If RSA authentication is used, the Secure Key Driver must be used to
program the PS eFUSE array. If AES Encryption is used, th eFUSE Driver is an alternative to
using iMPACT to program the AES key. The steps to use the Secure Key Driver are given in the
Secure Key Driver section.

First Stage Boot Loader

The FSBL is the partition loaded into OCM by the BootROM code. The FSBL loads partitions
(software programs, the bitstream) in the image, which is stored in NVM, to the partitions
destination. The destination of software partitions is usually DDR, OCM, or AXI BBRAM. The
destination of the bitstream is the PL configuration memory. Using the AES/HMAC engine and
the RSA libraries, the FSBL controls the decryption and authentication process. Although the
functionality of the FSBL meets most user load requirements, the source code is editable if
there are custom requirements.

http://www.xilinx.com

Boot Architecture

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 7

iMPACT

iMPACT is used to program FPGAs, including the PL, principally in development. The iMPACT
tool programs the PL eFUSE array or BBRAM, including control parameters and the 256-bit
AES key.

U-Boot

U-Boot is open source software that runs on Zynq devices. It is commonly used to load Linux.
Other U-Boot functions include reading DDR memory, and erasing, reading, writing NVM.
U-Boot is loaded by the FSBL or XMD. It is used in both non-secure boot, but is not required for
either.

BootROM Code

BootROM code is masked programmed ROM code which runs at power-up and in some cases
in a multiboot. The BootROM code determines the boot mode, initializes the memory
controllers used in boot, and if in a boot mode other than JTAG, loads FSBL into the OCM.

Chain of Trust

Booting a device securely starts with the BootROM code loading the FSBL, and continues
serially with the FSBL loading the bitstream and software. With a secure boot foundation
established by the boot ROM code, the chain of trust is created by the successive
authentication of all software loaded into the device. This prevents an adversary from
tampering with software or the bitstream file.

Device Configuration (devcfg)

The devcfg is the Xilinx device configuration driver which uses the direct memory access
controller (DMAC) to load the bitstream and software. Typical uses of the devcfg software are to
load the bitstream from non-volatile memory (NVM) to random access or configuration
memory.

Image

An image is a file which contains the bitstream and software which define Zynq's functionality.
Typically, an image is loaded into NVM first. At power up, the image is copied from NVM into
RAM and/or configuration memory as part of the boot process. An image consists of one or
more, typically more, partitions. In addition to the bitstream and software partitions, the image
contains header (boot, partition) information used to define the characteristics of the partitions
and image.

Partition

Partitions are the individual PL bitstream and PS software (ELF, BIN) that comprise an image.
Example partitions are system.bit, fsbl.elf, hello_world.elf, u-boot.elf,
uImage.bin, devicetree.dtb, and uramdisk.image.gz.

Boot Image Format (BIF)

The BIF is the input file into Bootgen that lists the partitions (bitstream, software) which
Bootgen is to include in the image. The BIF also includes attributes for the partitions. Partition
attributes allow the user to specify if the partition is to be encrypted and/or authenticated.

ps7_init

The ps7_init command is an alternative to using an FSBL in a non-secure boot. The ps7_init
command provides a simple method to initialize boot components during development when
XMD is used.

http://www.xilinx.com

Boot Process

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 8

Xilinx Microprocessor Debugger (XMD)

XMD is a Software Development Kit (SDK) software tool commonly used to load PL and PS
partitions in development. In addition to loading partitions. XMD is used to quickly test device
functionality. XMD uses the JTAG port, so it cannot be used in secure boot.

RSA

RSA is a public key algorithm used to authenticate software, including ELF, BIN, and BIT
partitions. Authentication verifies that software has not been modified. In Zynq devices, each
software partition can be individually authenticated. RSA uses a public/private key pair. The
private key is used by Bootgen in signing the partition at the manufacturing facility. The public
key is used in verifying the partition in the fielded Zynq device. In Zynq devices, the
public/private key pair can be changed as often as desired, even on different partitions in the
same image.

Software Development Kit

SDK is Eclipse based software which is downloadable from the Xilinx website. In addition to
software development, SDK supports creating images, downloading software and the
bitstream into the Zynq device, writing the image into QSPI, and debugging software programs.

Boot Process This section provides an overview of boot modes, boot steps, boot flows, and maintaining
security after boot. Following this, the software used in boot, including the BootROM code,
FSBL, and U-Boot, is discussed.

Boot Modes

The boot modes are PS Master Non-secure, PS Master Secure, and JTAG. The master modes
use QSPI, SD, NAND, or NOR NVM.

Secure Boot Steps

Figure 3 shows the steps to develop a secure embedded system.

X-Ref Target - Figure 3

Figure 3: Steps in Developing a Secure System

Generate AES, RSA Keys

Use the Secure Key Driver to Program

Program AES Key

Use Bootgen to Create Image
in MCS or BIN Format

Program QSPI with MCS File

XAPP1175_3_070513

RSA Enable, PPK Hash

or
Program SD with BIN file

http://www.xilinx.com

Boot Process

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 9

Boot Flows

To boot the Zynq device, software (FSBL, U-Boot) is developed on a PC using SDK, and the
image is created by Bootgen. Running on Zynq devices, the FSBL loads the software used by
Zynq devices.

Two distinct load operations are required: loading an image into NVM, and copying partition(s)
from NVM to DDR (or OCM). SDK’s Flash Programmer, zynq_flash or U-Boot load an image
into QSPI.

If SD is used, a BIN image is written to the SD card. This uses a SD card reader/writer which
is connected to the PC with a USB cable. The SD card goes into the ZC702 Evaluation Board
SDIO slot (J64).Copying the image from the SD card or QSPI is done by FSBL or U-Boot. In
loading NVM, all partitions are typically loaded into flash or SD. Booting Zynq is commonly a
two step process, with the FSBL loading the bitstream file and U-Boot partitions, and U-Boot
loading the remaining partitions. The remaining partitions are usually Linux partitions, including
Linux applications.

While it is common for U-Boot to load Linux and Linux applications, in most of the use cases in
this application note, the FSBL loads U-Boot, Linux, and the Linux applications. U-Boot is still
loaded because it is used for functions other than loading Linux. Using the FSBL to load Linux
partitions allows the user to specify whether each partition is encrypted or authenticated. This
capability will be provided in a future release of U-Boot.

If the boot mode pins specify JTAG, the BootROM code enables the JTAG port. XMD is used to
load and run software. In the JTAG boot mode, the FSBL displays a message that JTAG boot
mode is used. The FSBL does not load partitions when JTAG mode is used. In a non-secure
JTAG boot, either the FSBL or ps7_init initializes boot components.

BootROM code

The BootROM code does the initial setup at boot. If the boot is a Master Secure or Master
Non-Secure boot, the BootROM code initializes the NVM controller specified by the boot mode
register, parses the boot header, and copies the FSBL to OCM.

Figure 4 shows the BootROM code flow. The BootROM code reads the boot mode register to
determine if a master or slave boot mode is used, and if master, the type of NVM used. The
BootROM code reads the Boot Header to determine whether the boot is non-secure or secure,
and if secure, whether the key source is BBRAM or eFUSE. If there is a key mismatch between
the key source specified in the PL eFUSE array and the key source specified in the boot
header, the BootROM code transitions the Zynq device to a secure lockdown state. If the
BootROM code determines that the device is in an illegal boot mode based on its state, the
BootROM code transitions the Zynq device to a secure lockdown state. An example of an
invalid state is a Boot Header in which the Encryption status field specifies encryption using
BBRAM and the PL eFUSE array specifies an eFUSE only key source. In a secure boot, the
BootROM code executes proprietary tests to ensure security before it authenticates the FSBL.

In the eXecute In Place (XIP) mode, the CPU runs code directly from NVM rather than DDR.
The XIP mode cannot be used in secure boot.

http://www.xilinx.com

Boot Process

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 10

First Stage Boot Loader

The first stage boot loader (FSBL) is loaded into OCM by the BootROM code. The FSBL is
closely aligned with Bootgen in that it reads the partitions in the image created by Bootgen. The
principle function of the FSBL is to copy partitions from NVM to DDR and PL configuration
memory. If the partition is encrypted, the partition is routed to the AES/HMAC engine for
decryption before it is loaded in DDR or other destination address. If the system.bit is in the
image, the FSBL transfers the system.bit into the PL configuration memory. It then transfers the
secondary storage boot loader (SSBL) or application partition(s) to their destination address,
typically DDR. The FSBL can load multiple ELF files.

A second method of loading partitions is for the FSBL to load u-boot.elf, and U-Boot loads
software partitions.

Prior to loading partitions, the FSBL completes the initialization of the device started by the
BootROM code. The MIO, clocks, and DDR controller are initialized.

The FSBL supports most user's software load requirements. In some cases, users need to edit
the FSBL source code to meet additional load or functional requirements. As an example, the
User Defined Field in the Authentication Certificate can be used for a function such as defining
the software version being loaded. To support this, the FSBL code would require edits which

X-Ref Target - Figure 4

Figure 4: BootRom Code Flow diagram

Power Up ||
POR

Clear PS, PL

Initial
Boot

Boot Mode Register

Boot Header

Efuse Array

Key Mismatch ||
Illegal Boot Mode ||
Boot Header Error ||
Boot Flow Error

Master (Unencrypted) Master (Encrypted)

JTAG

Secure
Lockdown

Master
NS Initial

Boot

Master
S Initial

Boot

Security Disable &
CPU Idle

Initialize Clocks, Mem Ctlrs

NS First
Stage Boot

S First
Stage Boot

Move FSBL: NVM->OCM Move FSBL:NVM->OCM
thru AES/HMAC Engine

Initialization, Move Images

Multiboot Error

Multiboot Error

XIP

BH Length = 0

Initialization, Move Images

Boot Flow
Error || XIP

Unlock/Lock
Subsystems &&
pcfg_aes_en=1

S - Secure

NS - Non-secure

XAPP1175_05_061513

Authenticate, Enable Decryption if Specified

http://www.xilinx.com

Boot Process

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 11

check that the correct software version is loaded. The FSBL source code is in the src directory
of the zynq_fsbl_0 software project.

Note: The FSBL code most likely to be edited is in main.c and image_mover.c

FSBL hooks provide a framework to plug in user defined functions. An example use of the
FSBL hooks is to initialize PL cores after a bitstream is downloaded. The FSBL hook functions
in fsbl_hook.c are:

• FsblHookBeforeBitstreamDload: Provides a region for FSBL edits before bitstream
download

• FsblHookAfterBitstreamDload: Provides a region for FSBL edits after bitstream download

• FsblHookBeforeHandoff: Provides a region for FSBL edits before the FSBL hands off to
the SSBL or an application.

The Targeted Reference Design (TRD) system in zc702_linux_trd provides an example of
FSBL edits in initializing an I2C. In XAPP1078 Simple AMP Running Linux and Bare-Metal
System on Both Zynq SoC Processors, the FSBL searches for additional partitions to load.

http://www.xilinx.com

Boot Process

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 12

Figure 5 shows a flow chart of the FSBL.

The FSBL parses the boot image to determine if the image is to be RSA verified and/or AES
decrypted. If the partition is AES encrypted, the FSBL routes the partition to the AES/HMAC
engine, and then to its final destination. If the partition is RSA authenticated, the FSBL reads
the authentication certificate (AC) to verify the partition. The AC contains the public key and the
signature.

The FSBL uses the sha256 and rsa2048_ext library functions to verify the partition. The
sha256 and rsa2048_ext compiled functions reside in $XILINX_EDK/lib. The FSBL parses
the image in NVM, executing these steps:

• Verify the Secondary Public Key (SPK) using RSA

• Verify the partition using RSA

X-Ref Target - Figure 5

Figure 5: FSBL Flow

N

Y

N

Read Partition Header

Authentication Certificate?

RSA Verify Partition

Partition Encrypted?

Route Partition to
AES-HMAC Engine

Last Partition

Initialization

XAPP1175_06_080113

Y

N

Route Partition to
Destination

Handoff Executable
Partition

http://www.xilinx.com

AES Encryption and RSA Authentication

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 13

The RSA functions called in the FSBL code are conditionally executed based on the existence
of partition authentication certificates in the image.

U-Boot

U-Boot is an open source bootloader commonly used in embedded systems. U-Boot performs
similar functions to the FSBL. U-Boot has additional functions, such as reading and writing
NVM and DDR. The zc702_uboot reference system provides a system with U-Boot. U-Boot
typically runs in DDR, not OCM. The wiki.xilinx.com site provides information on configuring
and building U-Boot. In addition to loading Linux from NVM to DDR, U-Boot is used to read
DDR, and to erase, write, and read NVM. The U-Boot erase, read, and write operations on
QSPI are an alternative to the SDK Flash Writer, which runs on a PC. U-Boot runs on Zynq
devices.

U-Boot can run interactively, providing a zynq-uboot prompt, or it can run automatically at
power up. The zynq_common.h file in the include/configs directory contains options which set
U-Boot functionality. After configuration edits, U-Boot must be re-compiled as described in
wiki.xilinx.com. For development, configure U-Boot with a 5 second delay. For production,
particularly for secure boot, re-configure with a 0 delay, and rebuild U-Boot.

U-Boot support is an active area of development at Xilinx, including adding the
authentication/decryption features currently in the FSBL to U-Boot, and adding support for
additional NVM configurations.

AES Encryption
and RSA
Authentication

Bootgen and FSBL software support AES encryption, HMAC authentication, and RSA
authentication. RSA is effective for authentication. AES is more efficient than public key
cryptography in encryption. Private keys are used in AES encryption and HMAC authentication,
and private/public key pairs are used in RSA authentication. For RSA authentication, Bootgen
signs partitions and the BootROM code and the FSBL verifies partitions.

The private/public key pair used in RSA authentication have significant security advantages
over cryptography which only uses private keys. In RSA, the private key is used at the
manufacturing facility which usually has physical security. The public key is loaded into the
embedded device. If an adversary steals the embedded device and extracts the public key, the
damage is limited. The RSA key pairs can be changed as often as needed. Changing the key
reduces the risk that the key is compromised, and reduces the vulnerability of the IP the key is
protecting.

Zynq devices provides a silicon based AES/HMAC engine which decrypts/authenticates at
100 MB/s. The AES/HMAC engine does not encrypt. AES-256 is used for
encryption/decryption and HMAC is used for private key authentication. AES encryption is
done by Bootgen. The AES and HMAC functions in the AES/HMAC engine cannot be used
independently to decrypt / authenticate partitions. AES is a symmetric cryptographic algorithm
which uses a private 256 bit key. The HMAC key is a 256 bit private key.

The RSA asymmetric cryptographic algorithm in Zynq devices uses a 2,048 bit modular.
Modular is the generally accepted description of the key length. The BootROM code
authenticates the FSBL partition, and the FSBL authenticates the partitions it loads. The
BootROM code and FSBL use the identical RSA algorithm.

Since Bootgen signs partition(s) and the BootROM code and the FSBL verify the partitions,
Bootgen, BootROM code, and FSBL software must agree on the image format. For each
partition authenticated, an authentication certificate (AC) field in the image is used for RSA
authentication.

Figure 6 shows the interaction between Bootgen and the FSBL. Bootgen runs on a PC, and the
FSBL runs on Zynq devices. For each partition, Bootgen executes the cryptographic functions
in the order shown. Similarly, in loading each partition, the FSBL executes the cryptographic
functions in the order shown.

http://www.xilinx.com
http://www.wiki.xilinx.com/
http://www.wiki.xilinx.com/

Security in Embedded Devices

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 14

In Bootgen, the HMAC is generated first, followed by AES encryption, followed by RSA signing.
In Zynq devices, these steps are reversed: the partition is RSA authenticated, AES decrypted,
and then HMAC authenticated.

In RSA authentication, the partition is not signed. Instead, a hash of the partition is generated,
using a SHA256 function. The SHA256 hash is a one way function which produces the same
size output, independent of whether the partition size is 1,000 or 1 MB. The hash is signed
using the private key. For each partition which is RSA authenticated, Bootgen writes an
Authentication Certificate (AC) which contains the keys and the signatures for the partition.

In the ISE 14.7 release, U-Boot will add capability to RSA verify partitions using the same RSA
library used by the FSBL.

Security in
Embedded
Devices

Security should be considered at the beginning of embedded device development, starting with
identifying potential threats. Potential threats to an embedded device are provided in the
following list:

• Theft of the Embedded Device

• Privacy of the data in the Embedded Device or System

• Cloning of the Embedded Device

• Denial of Service

• Insertion of malware to change the behavior of the Embedded Device

• Insider Providing Key to Adversary

Figure 7 is a boot flow in which authentication is used to load partitions in a chain of trust. The
BootROM code loads the FSBL. The FSBL and U-Boot bootloaders load the hardware and
software partitions. The principle objectives in a secure boot are to prevent an adversary from
loading a modified partition, and to keep proprietary partitions confidential.

X-Ref Target - Figure 6

Figure 6: FSBL - Bootgen Interaction

Bootgen

HMAC Sign

AES Encrypt

RSA Sign

Personal Computer ZC702

FSBL

RSA Verify

AES Decrypt

HMAC Verify

XAPP1175_25_051613

http://www.xilinx.com

Security in Embedded Devices

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 15

In Bootgen, users define which partitions are encrypted, and which partitions are authenticated
using a RSA private/public key pair. Authenticating all partitions in a chain of trust ensures that
only partitions which have not been tampered with are loaded.

An important part of embedded device security is key security. An advantage of RSA is that the
private key is not loaded into the device. A second advantage is that different RSA keys can be
specified for each partition, and the RSA key can be changed when partitions are updated.
Changing the key limits the time an adversary has to attack the key, and limits the information
that is vulnerable.

To facilitate key security, Bootgen provides the ability to handle RSA keys securely, limiting
access to an Infosec staff. Since only the Infosec staff has access to keys used in the final
embedded product, this reduces the threat of an insider attack.

Zynq devices also provide security by integrating a large amount of software and hardware IP
within its security perimeter. A combination of build options and software allows the protection
of IP within the security perimeter. Additionally, Zynq devices have a relatively large amount of
secure storage available for sensitive program and data storage. Since this storage is not large
enough to hold the Linux OS, system partitioning of sensitive and non-sensitive functions is
required. Linker script and BIF attributes allow open source code to run from DDR and sensitive
applications to run from on chip secure storage.The Secure Key Driver section provides a linker
script which locates code from On-Chip Memory (OCM).

Embedded systems are commonly attacked after a secure boot (i.e., during operation). The
loaded software, such as the operating system, should not allow an adversary access to Zynq's
hardware or software resources.

In a secure boot, all partitions are loaded in a chain of trust. After the transition from the boot
stage to an operational stage (i.e. when Linux applications have been loaded), the OS must
maintain the system as secure. In a non-secure boot, U-Boot and Linux applications can load
the bitstream. After Linux is loaded, an application can use the devcfg driver to load a bitstream.

Restated, the OS should not allow access to the devcfg driver to non-trusted
users/applications. The most direct method to do this is to keep the module out of the kernel
build. Linux has supervisor/user modes. If the devcfg driver is included in the Linux build, the
supervisor needs to restrict access, requiring passwords for users and limiting the devcfg file
permissions to only the supervisor.

The PS-PL architecture provides the user with the ability to provide redundancy in recovering
from operational failure in either the PS or PL. The PS can monitor the PL for a tamper event
triggered by single event upset (SEU) activity. The PL can monitor the PS using a security
monitor.

In addition to secure boot, embedded device security requirements may include anti-tamper
and information assurance. Xilinx sells a high-end, fully tested security monitor IP which
executes from the PL. Alternatively, a user can develop a security monitor which does not
consume PL logic resources. Using the Zynq-7000 Processing System to Xilinx Analog to
Digital Converter Dedicated Interface to Implement System Monitoring and External Channel
Measurements (XAPP1172) [Ref 3] is recommended as a good start in developing a lite
security monitor.

X-Ref Target - Figure 7

Figure 7: Chain of Trust in Secure Boot

FSBL
SSBL OS

Apps
BootROM

Code
Bitstream

U-Boot Linux

XAPP1175_02_051613

http://www.xilinx.com

Secure System Development

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 16

Anti-tamper (AT) is discussed in XAPP1084 Developing Tamper Resistant Designs with Xilinx
Virtex Series 6 and 7 FPGAs. Information assurance (IA) is discussed in Solving Today’s
Design Security Concerns (WP365) [Ref 4].

Secure System
Development

The steps in Creating a Project Using Xilinx Platform Studio are used to initially test a basic
secure system. Zynq devices have many security options not discussed in this section.
Figure 8 shows a typical secure development process which allows users to incrementally
learn to use Zynq device security features. This approach is used because once the eFUSE
key and eFUSE only control bit are programmed, there is no returning to using the BBRAM key
if the eFUSE key is lost. Also, once the RSA Enable eFUSE is programmed, a board cannot be
used without at least FSBL authentication in the master mode.

The process described in this section is not required, and is presented because Zynq devices
provide many security options with RSA and AES/HMAC. After starting with a non-secure
design, a subsequent step is a secure design using a BBRAM AES key. The BBRAM AES key
is reprogrammable. The next step is to enable RSA authentication. The RSA Enable eFUSE
control bit and the hash of the PPK are programmed into the PS eFUSE area using the Secure
Key Driver. BBRAM can still be used as the source of the key for AES decryption.

The next step is to use the eFUSE key for AES decryption. At this stage, a non-secure boot,
RSA authentication, secure boot with BBRAM AES key, and a secure boot with an eFUSE key
are possible. The board must be powered down to change the AES key source. If the RSA
Enable bit is programmed, the FSBL must be authenticated. An RSA enabled “non-secure”
boot differs from the un-authenticated non-secure boot.

X-Ref Target - Figure 8

Figure 8: Using Zynq Security Options

Non-Secure Design

Secure Boot - BBRAM

Secure Boot - eFUSE

Secure Boot - eFUSE only

Bootgen

Debug Mode -> Release Mode

XAPP1175_24_051613

http://www.xilinx.com

Booting the TRD Securely

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 17

Key Swapping eFUSE and BBRAM keys

Keys can be programmed in either eFUSE or BBRAM NVM. The advantages of BBRAM is that
it can be reprogrammed, and it can be erased if there is a tamper event. The eFUSE array
control bits eFUSE Secure Boot and BBRAM Key Disable prohibit swapping between the
eFUSE and BBRAM key. If these bits are not programmed, either key source can be used after
a power down. If BBRAM Key Disable is programmed but eFUSE Secure Boot is not
programmed, a non-secure boot or a secure boot using the eFUSE key can be done. To use
only the eFUSE as the AES key source, the eFUSE Secure Boot Only bit is programmed in
the PL eFUSE control array. The PL eFUSEs can be programmed either with iMPACT or the
Secure Key Driver. The Secure Key Driver section shows how to program this functionality.

The last option in the figure, Bootgen Release mode, is used by the Infosec staff for the
production release of the secure embedded device. In this stage, Bootgen Release mode can
be used to increase the security of the RSA private key. This is discussed in the Advanced Key
Management Options section.

Booting the
TRD Securely

The source files for booting the ZC702 Base System TRD quickly are provided in the
zc702_linux_trd reference system. This section provides an example, the Target Reference
Design, which shows that the creation of a secure boot image is straightforward. This section
uses pre-existing keys in the reference design systems. There is a section on Generating Keys
later in this document.

Note: Using the following step, the PS eFUSEs are blown. After this, in all subsequent tests using the
ZC702, at least one partition must be authenticated.

Use the following steps to boot the TRD securely.

1. Setup the ZC702 board. See the Setup the ZC702 Evaluation Board section. Set the Boot
mode switches to JTAG boot mode.

2. Invoke the Teraterm communication terminal and set Baud Rate = 115200, Data = 8 Bits,
Parity = None, Stop Bit = 1, Flow Control = None.

3. Change to the xapp1175/zc702_secure_key_driver/ready_for_download
directory. This directory contains the ps_secure_key_read.elf and
ps_secure_key_write.elf files. If the eFUSEs are programmed, run the
ps_secure_key_read.elf in step 4. If the eFUSEs need to be programmed, and it is
acceptable to use the Xilinx provided keys for the evaluation board, run the
ps_secure_key_write.elf in step 4.

4. Run xmd at a command prompt or from SDK, and run the following:

connect arm hw

source ps7_init.tcl

ps7_init

then either:

dow ps_secure_key_write.elf (if programming the eFUSEs)

or

dow ps_secure_key_read.elf (if reading the eFUSEs)

con

5. Optionally, verify that the hash of the PPK displayed in the communication terminal
matches the values in
xapp1175/zc702_efuse_driver/ready_for_download/hash_ppk.txt.

6. Change to the xapp1175/zc702_linux_trd directory.

7. Run bootgen -image zc702_linux_trd.bif -o zc702_linux_trd.mcs
-encrypt bbram.

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 18

Note: In the SDK 14.6 release, this command must be run on Linux. Windows support will be
provided in SDK 14.7.

8. Invoke SDK. Select the workspace as xapp1175/zc702_linux_trd/SDK.

9. In SDK, enter Xilinx Tools > Program Flash.

10. Specify the image by browsing to
xapp1175/zc702_linux_trd/zc702_linux_trd.mcs. Set the offset to 0x0. Set the
flash type to QSPI Single. Click Program.

11. On the ZC702 Evaluation Board, change the boot mode switch to QSPI boot mode by
moving the J25 jumper to 1 (or 4 if the evaluation board uses the single switch).

12. Power cycle. Verify that Zynq boots to the Petalinux prompt. To login, use root for the user
name and root for the password.

13. To compare non-secure and secure boot time, repeat step 7-step 12. When re-running
step 7 for a non-secure BIF, eliminate the -encrypt bbram argument, but program QSPI
instead with zc702_linux_trd_ns.mcs.

Building and
Booting a
Secure System

This section provides the steps to develop a Zynq system using the GUIs provided by Xilinx
Platform Studio (XPS) and SDK. The steps for AES key generation and creating non-secure
and secure images are provided. RSA authentication is not supported with the GUI in 14.6. The
steps for setting up the ZC702 evaluation board are given. The zc702_uboot system is booted
using JTAG mode. This is followed by non-secure and secure boots using ZC702 SD and QSPI
memory.

The required tasks for a secure boot are:

• Create the Zynq hardware and software using Xilinx software

• Use Bootgen Advanced Tab to generate a secure image

• Use Bootgen to generate the AES key

• Use iMPACT or the Secure Key Driver to program the AES key to either BBRAM or eFUSE

• Load the SD Card or Program QSPI flash on ZC702 Evaluation Board

This section provides an introduction to developing a system and using the Bootgen GUI. The
ISE Design Suite 14.6 Bootgen GUI does not support RSA authentication or mixed
encrypted/unencrypted partitions. Bootgen supports mixed encrypted/unencrypted partitions,
user selectable security on partitions, and RSA authentication when run at the command line.

Note: The steps in this section only work on a board on which the RSA Enable has not been
programmed. This design files for this section are meant to be created by the reader. The design files in
the zc702_uboot system are for a board in which RSA_Enable has been programmed.

Details on advanced security functionality are provided in later sections. The later sections do
not require the files produced in this section. Starting with the 14.6 Release, Xilinx
recommends that users transition to Vivado for design entry. Because boot uses SDK, any
method of developing the software and bitstream partitions is acceptable.

Creating a Project Using Xilinx Platform Studio

In this section, Base System Builder (BSB) is used to create the zc702_uboot project. The
system includes the UART1 and GPIO IP in the PS and the GPIO switch, GPIO LEDs, AXI
BRAM, and AXI Timer IP in the PL.

The zc702_uboot system contains the MHS, XMP, and UCF files. This allows systems to be
built with new releases of Xilinx software. If using this section to create a new project, create a
new project directory.

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 19

1. Invoke XPS, by entering ISE Design Suite 14.6 > EDK > Xilinx Platform Studio if using
Windows, or entering xps & if using Linux. In the Getting Started window, click Create New
Project Using Base System Builder. Browse to the zc702_uboot directory. Verify that the
File Name box contains system.xmp. Click Save. Figure 9 shows the creation of a BSB
project. Enter a project name in the Project File dialog box and click OK.

X-Ref Target - Figure 9

Figure 9: Creating the zc702_uboot Base System Builder Project

X1175_07_052313

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 20

2. As shown in Figure 10, specify Zynq ZC702 Evaluation Board in the Board Name field.
Click Next.

X-Ref Target - Figure 10

Figure 10: Selecting the ZC702 Evaluation Platform

X1175_08_052313

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 21

3. As shown in Figure 11, highlight axi_bram_ctl in the Available Peripherals pane and
click Add to add the AXI BRAM intellectual property (IP). The AXI BRAM is PL IP. Select
the 64K size. Repeat this Add Peripheral step by selecting axi_timer and clicking Add.
Check Use Interrupt for the AXI Timer. Click Finish.

X-Ref Target - Figure 11

Figure 11: Adding AXI BRAM Intellectual Property to PL

X1175_09_052313

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 22

4. As shown in Figure 12, enter Project > Export Hardware Design to SDK to invoke the
project and launch Software Development Kit (SDK). Select “Include bitstream and
BMM file.” If run with the default option to create the bitstream, this step can take 10
minutes. A status icon is displayed in the lower-right corner of XPS during this time.

When the hardware is exported and SDK is invoked, the Workspace Launcher dialog box
prompts for a workspace name. Set the workspace to the zc702_uboot/SDK directory.
Click OK.

X-Ref Target - Figure 12

Figure 12: Exporting Hardware Design to SDK

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 23

5. As shown in Figure 13, select File > New > Board Support Package. Select Standalone
and use default options to create a Board Support Package (BSP). Click Finish. When the
Board Support Package Settings dialog box is displayed, click OK without selecting any
libraries. SDK builds the board support package.

X-Ref Target - Figure 13

Figure 13: Creating a Board Support Package

X1175_11_053113

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 24

6. Create the FSBL project. Select File > New > Application Project. The Application
Project dialog box is displayed. Enter fsbl as the project name. Select standalone_bsp_0
from the Use existing Board Support Package option. Click Next. The New Project
Templates dialog box is displayed. Figure 14 shows the creation of the FSBL project.
Select Zynq FSBL and click Finish.

X-Ref Target - Figure 14

Figure 14: Creating the First Stage Boot Loader (FSBL) Software Application

X1175_12_052313

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 25

7. Right-click on the FSBL in the Project Explorer pane and select Properties. As
shown in Figure 15, edit FSBL compilation options so that debug information is displayed in
the SDK or communication terminal window. With the Debug options used in compilation,
FSBL provides useful information on the partitions in the image. If the SD or QSPI boot
modes are used, the debug information is useful. If JTAG boot mode is used the FSBL does
not copy partitions, and therefore information is not provided.

To view details of the boot process in a FSBL debug log file, select C/C++ Build > Settings
> ARM gcc compiler > Symbols and compile using DEBUG, FSBL_DEBUG_GENERAL,
and FSBL_DEBUG_INFO symbols. In the Defined Symbols pane, click the “+” icon to
iteratively select the symbols. The figure shows the entry of FSBL_DEBUG_INFO in the
Enter Value dialog box. Perform this step three times, once for each symbol.
Click Apply, then click OK. The FSBL software project is compiled. The ELF (fsbl.elf)
is in the fsbl/Debug directory.

X-Ref Target - Figure 15

Figure 15: Using Symbol Compile Options for the FSBL Software Application

X1175_13_052313

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 26

8. In SDK, select Xilinx Tools > Create Zynq Boot Image to invoke Bootgen. Figure 16
shows the invocation of the Bootgen GUI.

X-Ref Target - Figure 16

Figure 16: Invoking Bootgen

X1175_14_052313

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 27

9. Use the Basic tab in the Create Zynq Boot Image dialog box to specify the directory and
name of the BIF file. Use the Browse button to select the fsbl.elf file from the
fsbl/Debug directory, where fsbl was specified as the project name. Add system.bit to
the list of partitions. If used, the bitstream partition must follow the FSBL partition. Add
u-boot.elf to the list of partitions. As shown in Figure 17, click Create Image to generate the
BIF and non-secure BIN and MCS files. The file is the input file into Bootgen that lists the
partitions to include in the image. The MCS formatted image is used in QSPI boot mode.
The BIN formatted image is used in SD boot mode. Create a directory
ready_for_download_unencrypted in the project. Use the Browse button to select the
ready_for_download directory as the Output folder.

X-Ref Target - Figure 17

Figure 17: Creating a Non-secure BIF Using the Bootgen GUI

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 28

10. When encryption is selected, SDK 14.6 Bootgen GUI generates a secure image in which
all partitions in the image are encrypted. The AES/HMAC engine requires a 256-bit AES
key and a 256-bit HMAC key. The AES key can be generated using the Xilinx Bootgen tool
or an external tool. To generate a development AES key using the Xilinx Bootgen software,
create a generate_aeskey.bif file with the following content:

generate_aeskey_image:

{

[aeskeyfile] bbram.nky

[bootloader, encryption=aes] fsbl.elf

}

Use the following Bootgen command to generate an AES key:

bootgen -image generate_aeskey.bif -o temp.mcs -encrypt efuse | bbram

If the specified AES key does not exist, Bootgen generates the key with the name in the
generate_aeskey.bif file (bbram.nky in this case).

Note: The value to the -encrypt argument is either efuse or bbram. This command does not work on
Windows in 14.6. It will be supported in 14.7.

11. To create a secure image, specify partitions in the Basic tab in the Create Zynq Boot Image
dialog box using the same method used for the non-secure image. Create an output
directory ready_for_download_bbram. Specify this directory in the Output folder. Click on
the Advanced tab in the Create Zynq Boot Image dialog box, click Enable encryption,
and browse to the key generated in step 10. As shown in Figure 18, click Create Image to
create the secure boot image. Bootgen writes the image in either MCS or BIN format.

X-Ref Target - Figure 18

Figure 18: Creating an Encrypted Image

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 29

Setup the ZC702 Evaluation Board
1. Connect the power cable to the 12V J60 Connector.

2. Connect the USB cable from the PC to the USB UART J17 Connector.

3. Connect the Platform USB Cable II to JTAG Connector J2.

Table 1 provides the function of mode select switch on the ZC702. Some ZC702 boards use
SW16, while some ZC702 boards use the J25, J22, and J20 jumpers.

Table 1: ZC702 Boot Mode Selection

MIO[5] - J25 MIO[4] - J22 MIO[3] - J20

JTAG 0 0 0

NOR 0 0 1

NAND 0 1 0

Quad-SPI 1 0 0

Secure Digital 1 1 0

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 30

After the board is setup, use the following steps to program the AES key, load the boot image,
and boot an encrypted image.

1. As shown in Figure 19, invoke iMPACT with impact & if using Linux or ISE Design Suite
14.6 > ISE Design Tools > 64-Bit Tools > iMPACT if using Windows. Click No when
prompted to save the project file. Click Cancel when the New iMPACT Project dialog box is
displayed. Double-click Boundary Scan in the iMPACT Flows pane. Right-click and select
Initialize Chain. Initialize the JTAG chain. If only one of the ARM® core or xc7z020 FPGA
is displayed on the JTAG chain, change the Boot Mode selection switch to JTAG and
re-initialize the chain.

Click Yes when asked to assign a configuration file. With the DAP (far-left device) displayed
in green, click Bypass. With the xc7z020 selected, enter
xapp1175/xc702_uboot/bbram.nky in the Assign New Configuration File dialog
box. Click Cancel when the Device Programming Properties dialog box is displayed.

X-Ref Target - Figure 19

Figure 19: iMPACT - Detecting Concatenated JTAG Chain

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 31

2. As shown in Figure 20, use iMPACT to program BBRAM key. Right-click on xc7z020 and
click Program. Select Cancel when the Device Programming Properties is displayed.
iMPACT can also program the eFUSE key. If eFUSE and BBRAM keys are programmed,
the Bootgen -encrypt efuse | bbram argument specifies which key is used. Bootgen writes
the key source to the Boot Header region of the image. At power up, the BootROM code
reads the Boot Header to determine which key source to use. The eFUSE control register
is also programmed with iMPACT.

An alternative to using the iMPACT GUI is to run iMPACT from the command line as shown
in Figure 20. Edit loadkey.cmd to use the correct key file.

cd xapp1175/zc702_uboot

impact -batch loadkey.cmd
X-Ref Target - Figure 20

Figure 20: Using iMPACT to Program BBRAM Key

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 32

3. Invoke SDK by running xsdk & at the Linux prompt or Xilinx Design Tools > ISE Design
Suite 14.6 > EDK > Xilinx Software Development Kit from the Program Start Menu. Set
the workspace at zc702_uboot/SDK. Click the Terminal tab to setup a terminal window.
Figure 21 shows how to set up the SDK communication terminal to use a 115200 baud
rate. Alternatively, minicom, TeraTerm or Hyperterminal can be used as the communication
terminal.

X-Ref Target - Figure 21

Figure 21: SDK Communication Terminal

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 33

4. From SDK, click Xilinx Tools > Program Flash. Optionally, click Verify after Flash, and
Click Program. Figure 22 shows programming the NVM QSPI flash memory.

To program QSPI at the command prompt, enter the following:

zynq_flash -f u-boot.mcs -offset 0x0

Note: This assumes the u-boot.mcs is in the current directory. Use the full path if it is in a different
directory.

X-Ref Target - Figure 22

Figure 22: Programming QSPI NVM

http://www.xilinx.com

Building and Booting a Secure System

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 34

5. Set the J20/22/25 switches to select the QSPI boot mode. Power cycle the board.
Figure 23 shows the communication terminal output with the U-Boot prompt.

6. To boot using the SD card, copy the <design>.bin created by Bootgen to BOOT.bin.
Connect a SD/MMC Card Reader/Writer to a PC using a USB cable. Copy BOOT.BIN to
the SD card. Insert the card into the SD MMC slot. Set the Boot Mode settings to SD (011).
Power cycle. Verify that the same output is displayed in the communication terminal as
when QSPI boot mode is used.

Debugging QSPI Boot Failure

If there is a functional failure after booting from QSPI mode, verify that the function works as
expected after the partitions are loaded using JTAG boot mode. Select Xilinx Tools > XMD
Console, and enter the following XMD commands:

xmd
fpga -debugdevice devicenr 2 -f system.bit
connect arm hw
rst -processor
source ps7_init.tcl
ps7_init
ps7_post_config
dow u-boot.elf
con
exit

Note: If the files are not in the current directory, use full paths to the files.

Failure to boot is usually due to incorrect setup of the clocks or memory controllers. The clock
frequencies may change across releases of different versions of silicon and software.

X-Ref Target - Figure 23

Figure 23: Communication Terminal Output after Running U-Boot Application

http://www.xilinx.com

Creating a Secure Boot Image

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 35

If the JTAG boot works, the next step to debug the QSPI failure is to create a version of the
FSBL which provides debug information. This is defined in the Creating a Project Using Xilinx
Platform Studio section. Create the new FSBL, and see the steps to include the debug FSBL in
the BIF. Re-run the QSPI boot, and read the FSBL debug log file to locate the boot error.

Creating a
Secure Boot
Image

The system architect has two considerations in creating a secure boot image. One is to specify
which partitions are encrypted and which partitions are authenticated. The other is to architect
the system so that sensitive programs and sensitive data are located in secure storage, within
the security perimeter of Zynq.

A typical software image consists of relatively large open source U-Boot and Linux partitions,
and proprietary partitions which contain software and PLIP. In most cases, only the proprietary
or sensitive partitions are encrypted. When large partitions are unencrypted, the key is
exposed less. Conventionally, open source software such as U-Boot and Linux should be
authenticated to ensure that the partitions are not modified, but not encrypted. If proprietary
changes are made to U-Boot and/or Linux, these partitions can be encrypted. Encryption is not
a factor in booting with a chain of trust. Encryption ensures that the partition is not readable and
is confidential. The Bootgen Image Format (BIF) file is a Bootgen input file used to specify
encryption/authentication on a partition basis.

When decryption is used, the AES/HMAC engine runs at a lower clock frequency than other
circuitry. This means that boot time can be slower than when encryption is not used. The option
to leave open source partitions unencrypted may decrease boot time. In tests of QSPI on the
ZC702 board, the boot time for non-secure and secure boot are the same. The boot time can
differ for different NVM configurations and speed grades.

The first step in creating a secure system is to write the BIF file. Appendix B defines the security
requirements for sample embedded systems. The use cases provided are secure U-Boot,
Linux, and multiboot systems. Use cases are also provided for data partitions. The BIFs for the
use cases in Appendix B are given in Appendix C. The use cases are for boot at power-up, so
the use cases include the FSBL partition. Bootgen does not require the FSBL partition to be
included in the BIF. Bootgen can AES encrypt and RSA authenticate a single software or data
partition. This supports a post-boot load operation without the use of the FSBL.

The Zynq device's secure storage and security perimeter are useful in maintaining security
after handoff to Linux applications. The PL partition, which is encrypted in NVM, is decrypted
and stored in the PL's configuration memory. The PS partitions can be encrypted in NVM and
decrypted by the AES/HMAC engine. The software in DDR is usually unencrypted, outside of
Zynq's security perimeter.

To protect sensitive software and data, the destination address needs to be within the Zynq
device's security perimeter, typically OCM or AXI BRAM. The Building and Booting a Secure
System section shows how to use AXI BRAM with the ARM CPUs. The eFUSE Driver section
shows how to locate code/data in OCM. Since the amount of secure storage is limited, this
requires architecting the software memory map. Open source code can be stored in plaintext in
DDR. Sensitive software should be stored in secure storage. If the code in a software partition
does not need to be protected but the data is sensitive, the sensitive data can be loaded into
OCM using the linker script.

Bootgen can load data only partitions. If only the data is sensitive, data partitions are an
effective use of secure storage. Bootgen allows the data partitions to be encrypted and/or
authenticated.

In addition to authenticating software and the bitstream, RSA authentication and AES
encryption can be used on software updates, and partial bitstreams.

http://www.xilinx.com

Creating a Secure Boot Image

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 36

Bootgen

Bootgen is PC based software which generates the image loaded into NVM. The BIF file lists
the partitions and specifies authentication/encryption requirements for each partition. Bootgen
outputs a single image file in binary or MCS format. Attributes in the BIF file are used to specify
load addresses on a partition basis, and whether a partition is encrypted and/or authenticated.
In the 14.6 release, much of the Bootgen security functionality is only available when Bootgen
is run from the command line.

Bootgen operates in a Debug mode or a Release mode. Debug mode is easier to use, and
meets many users’ security requirements. Release mode provides improved security for RSA
keys. Debug mode is easier to use because RSA signatures for the partitions do not need to be
provided. In Debug mode, the user provides private RSA keys in the BIF, and Bootgen
generates the hashes and signatures. Bootgen Release mode uses public keys and signatures
in the BIF.

Bootgen is available in SDK and as a standalone tool.

http://www.xilinx.com

Creating a Secure Boot Image

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 37

Figure 24 shows the Bootgen flow.

To use Bootgen, create a Bootgen Image File (BIF) such as bootimage.bif, and run
Bootgen at the command line as follows:

bootgen -image bootimage.bif -o <design>.mcs -encrypt bbram

If the -encrypt <efuse | bbram> argument is used and an AES key file is not included, Bootgen
generates an AES (design.nky) key file with the prefix name of the [aeskeyfile] attribute
argument. This key filename must be used as the argument to the [aeskeyfile=<design>.nky]
attribute in the BIF file.

The following BIF is an example of a Linux image in which all partitions are authenticated, and
the FSBL and Linux applications are encrypted:

image: {
[aeskeyfile] bbram.nky
[pskfile] psk.pk1
[sskfile] ssk.pk1
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[encryption=aes, authentication=rsa] system.bit
[authentication=rsa] u-boot.elf
[authentication=rsa,load=0x3000000,offset=0x100000] uImage.bin
[authentication=rsa,load=0x2A00000,offset=0x600000] devicetree.dtb
[authentication=rsa,load=0x2000000,offset=0x620000] uramdisk.image.gz
[authentication=rsa, encryption=aes] sobel_cmd.elf
}

In this BIF, the pskfile attribute is for the primary secret key (psk.pk1), and the sskfile
attribute is for the secondary secret key (ssk.pk1). The [aeskeyfile] attribute specifies the AES
key. All partitions are authenticated. The fsbl.elf, system.bit, and sobel_cmd.elf

X-Ref Target - Figure 24

Figure 24: Bootgen Flow Diagram

Read Partition Attributes

Encrypted Partition

Encrypt Partition

Authenticated Partition

Read Keys

Generate Signatures
Generate Authentication

Certificate

Concatenate Partition,

Authentication Certificate

Last Partition

Generate BIN, MCS files

Y

N

N

Y

N

BIF

Y

XAPP1175_26_080113

Partitions

http://www.xilinx.com

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 38

are encrypted. The load attribute causes the FSBL to copy the partition to the specified
address.

Using these attributes, the FSBL copies the partition from the [offset] address in NVM to the
[load] address in DDR. When these attributes are used in the FSBL, U-Boot must be configured
and built such that U-Boot does not load the partitions. To define this U-Boot configuration, edit:

u-boot-xlnx/include/configs/zynq_common.h as follows:

Remove the sf read operations under the following line.

#define CONFIG_EXTRA_ENV_SETTINGS
qspi=echo Copying Linux from QSPI flash to RAM

Do not change the following command.

bootm 0x3000000 0x2000000 0x2A00000

When this BIF is used, the image is too large for the QSPI on the ZC702 board. One option is
to remove the system.bit partition.

Generating and
Programming
Keys

This section discusses the keys used, key format, key generation, and how keys are used by
Bootgen and the FSBL code. The zc702_secure_key_driver system programs keys and control
information. The use of iMPACT to program PL keys and control information was shown in the
Building and Booting a Secure System section.

The cryptographic keys used by Zynq are:

• AES 256 bit key

• HMAC key

• RSA Primary Secret Key (PSK)

• RSA Primary Public Key (PPK)

• RSA Secondary Secret Key (SSK)

• RSA Secondary Public Key (SPK)

As noted, RSA authentication in Zynq uses primary and secondary keys. The primary keys
authenticate the secondary keys. The secondary key(s) authenticate partition(s). In Bootgen
Debug mode, the user only provides private keys in the BIF.

Generating Keys

A developer’s key for AES/HMAC engine is generated using Bootgen. The AES key is
programmed into either eFUSE or BBRAM using iMPACT or the Secure Key Driver.

OpenSSL is used to generate RSA keys in this application note. There are other methods of
generating RSA keys. The primary and secondary secret RSA keys are generated using the
following OpenSSL command:

openssl genrsa -out psk.pem 2048
openssl genrsa -out ssk.pem 2048

Note: Openssl is in Linux distributions. Windows users can use Cygwin openssl or download openssl
from http://slproweb.com/products/Win32OpenSSL.html.

The format of these Privacy Enhanced Mail (PEM) key files is a Base64 encoding of a binary
DER file. These files can be recognized by their first line, which is “-----BEGIN RSA PRIVATE
KEY-----”. In RSA, the public key is contained in the private key. The openssl command to
extract the public key from the private key is:

openssl rsa -pubout -in psk.pem -out ppk.pub

http://www.xilinx.com
http://slproweb.com/products/Win32OpenSSL.html

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 39

openssl rsa -pubout -in ssk.pem -out spk.pub

In the naming convention for these files, PEM files are private (secret) and PUB files are public.
Both files are PEM format, but the extensions are different.

Note: There is nothing that enforces this convention, and the file extensions are ignored by Bootgen.

The PEM and PUB files can be used directly with Bootgen. Other tools may require these files
to be converted to a simple text format that displays the N, E, and D coefficients directly. This
can be performed with the convert_key.pl Perl script, which uses OpenSSL to extract the
coefficients.

convert_key.pl psk.pem psk.pk1
convert_key.pl ssk.pem ssk.pk1

Note: It may be necessary to precede convert_key.pl with xilperl, Active State Perl, or
/usr/local/bin/perl.

The.pk1 files contain N, E, D, P, and Q fields. The N and E coefficients represent the public
component, while the N, E, and D fields represent the private component. The *.pk1 files can
also be used with Bootgen, instead of the PEM/PUB files. Bootgen automatically determines
the format of the key file.

The AES key can be stored in a *.nky file, and referenced in the BIF using the [aeskeyfile]
attribute. While storing a key in a file is usually necessary, it increases the exposure of the key.
To avoid using a file containing a private key, specify the AES and HMAC keys on the command
line as:

bootgen -image zc702_u-boot.bif -o zc702_u-boot.mcs -w on -encrypt efuse
key=<aeskey> StartCBC=<initialization_vector> hmac=<hmac_key>

Note: This command is not supported on Windows in the 14.6 release.

eFUSE / BBRAM in Zynq Security

For RSA authentication, the hash of the PPK is stored in the PS eFUSE array. For AES
decryption, the key is stored in either the eFUSE or BBRAM in the PL. The PL eFUSE control
bits for eFUSE Secure Boot, BBRAM Key Disable, and JTAG Chain Disable are programmed
using iMPACT or the Secure Key Driver. The eFUSEs are OTP. A power on reset (POR) is
required after programming the eFUSEs.

Secure Key Driver

The Secure Key Driver programs the eFUSEs in the PS and the PL.

To compile and run the driver to program eFUSEs, the following tasks may be required.

• Generate the AES key

• Generate the hash of the PPK

• Edit the xilskey_input.h with the generated AES and hash (PPK) values

• Define XSK_EFUSEPS_DRIVER and XSK_EFUSEPL_DRIVER in xilskey_input.h as
required

• Use SDK to build the Secure Key Driver software project

• Run the Secure Key Driver using XMD or load the driver in NVM and power cycle

The Secure Key Driver can program the PS and/or PL eFUSEs. To program the PL eFUSEs,
four MIO outputs must be routed out of the MIO outputs into the JTAG pins. These are external
connections which must be made on the printed circuit board. Table 2 provides a sample pinout
which matches the connections used in the driver for the zc702 board. If other MIO pins are
used, change the locations specified in the XilSkey driver.

http://www.xilinx.com

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 40

For development, it is usually simpler to use iMPACT to program the AES key.

Generate Hash of PPK

After generating the RSA keys using openssl, use Bootgen to generate the hash of the PPK.

Create a gen_hash_ppk.bif file with the following content:

gen_hash_ppk:

{
[pskfile] psk.pk1
[sskfile] ssk.pk1
[bootloader, authentication=rsa] fsbl.elf
}

Run

bootgen -image gen_hash_ppk.bif -efuseppkbits hash_ppk.txt

This bootgen command produces the hask_ppk.txt file, which contains the hash of the PPK.
Using eFUSEs for the hash of the PPK is an efficient use of silicon.

Generate the ELF for the Secure Key Driver

To use SDK to create a Secure Key Driver application, change to the zc702_secure_key_driver
directory. The functionality of the Secure Key Driver is controlled by editing the
xilskey_efuse_example.c and xilskey_input.h files. If the PL eFUSEs are not programmed with
the driver, comment the

#define XSK_EFUSEPL_DRIVER

line. To only read the PS eFUSE, comment the write function in xilskey_efuse_example.c.

The xilskey_input.h file can be edited to program PS eFUSEs, PL eFUSEs, or both. Edit
xilskey_input.h using the following steps:

1. If used, define the XSK_EFUSEPS_DRIVER and XSK_EFUSEPL_DRIVER.

2. Copy the PPK hash from hash_ppk.txt to XSK_EFUSEPS_RSA_KEY_HASH_VALUE.

3. Set XSK_EFUSEPS_ENABLE_RSA_KEY_HASH to TRUE to program RSA PPK hash.

4. Set XSK_EFUSEPS_ENABLE_RSA_AUTH to TRUE to enable RSA authentication.

5. If programming the PL, copy the AES key to XSK_EFUSEPL_AES_KEY.

6. Set XSK_EFUSEPL_PROGRAM_AES_AND_USER_LOW_KEY to TRUE to program the
AES key.

Table 2: eFuse Connections

MIO JTAG

17 TDI

21 TDO

19 TCK

20 TMS

http://www.xilinx.com

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 41

Compile the zc702_Secure Key Driver. As shown in Figure 25, run xsdk & and change to the
zc702_secure_key_driver SDK workspace.

X-Ref Target - Figure 25

Figure 25: Create zc702_secure_key_driver SDK Workspace

http://www.xilinx.com

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 42

As shown in Figure 26, enter File > New > Application Project and define an application
project as secure_key_driver. Click Next.
X-Ref Target - Figure 26

Figure 26: Define secure_key_driver Application Project

http://www.xilinx.com

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 43

As shown in Figure 27, select Empty Application, and when the dialog box is displayed, name
the project secure_key_driver. Click Finish.

Note: It may be necessary to close a Welcome screen which hides the SDK display.

X-Ref Target - Figure 27

Figure 27: Create Empty Application

X1175_31_052313

http://www.xilinx.com

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 44

As shown in Figure 28, right-click on the secure_key_driver_bsp board support package,
and click on Board Support Package Settings.

X-Ref Target - Figure 28

Figure 28: Specifying BSP Settings

http://www.xilinx.com

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 45

As shown in Figure 29, select the xilskey library and rebuild the BSP. Click OK.

X-Ref Target - Figure 29

Figure 29: Selecting the Secure Key Library

http://www.xilinx.com

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 46

Figure 30 shows the compiled xilskey library.

X-Ref Target - Figure 30

Figure 30: Compiled xilskey Library

http://www.xilinx.com

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 47

With efuse_driver selected, enter File > Import > General File System, click Next, and browse
to the src directory containing and import xilskey_efuse_example.c and
xilskey_input.h. Select the two files and click Finish. Select the secure_key_driver
project, and run Project > Build Project. Figure 31 shows a compiled efuse_driver software
project.

X-Ref Target - Figure 31

Figure 31: Compiled Secure Key Driver

http://www.xilinx.com

Generating and Programming Keys

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 48

To run the Secure Key Driver from OCM rather than DDR, edit the linker script lscript.ld as
shown in Figure 32. The linker script in SDK is opened by selecting
efuse_driver/src/lscript.ld in Project Explorer, right-clicking lscript.ld, and
selecting Open.

Change the location of the sections to ps7_ram_0_S_AXI_BASE_ADDR. Add the
ps7_init.c and ps7_init.h files from the hw_platform directory to the source files.
Uncomment the ps7_init() call. Rebuild the efuse_driver software application.

Run the Secure Key Driver

The eFUSE driver can be run using any boot mode. The simplest is to use XMD in the JTAG
boot mode. The xapp1175/zc702_secure_key_driver/ready_for_download directory contains
the ps_secure_key_write.elf and ps_secure_key_read.elf files. If the PS eFUSES
have been programmed, use ps_secure_key_read.elf.

Run the Secure Key Driver in XMD to write eFUSEs using the following steps:

xmd
connect arm hw
source ps7_init.tcl
ps7_init
stop
dow ps_secure_key_write.elf (if writing)
dow ps_secure_key_read.elf (if reading)
con
stop

X-Ref Target - Figure 32

Figure 32: Loading the Secure Key Driver in OCM

http://www.xilinx.com

Advanced Key Management Options

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 49

The output of the eFUSE driver can be viewed in a communication terminal such as Tera Term
or the SDK terminal. Creating a communication terminal is shown in the Booting the TRD
Securely section. An alternative to running the Secure Key Driver in XMD is to load it into QSPI
or SD. To do this, create a BIF containing the FSBL and Secure Key Driver.

secure_key_driver:
{
[bootloader] fsbl.elf
ps_secure_key_write.elf
}

The FSBL is not included in the BIF when the Secure Key Driver is executed from OCM. The
FSBL is included in the BIF when the driver is executed from DDR. When executed from OCM,
the base address of the OCM must be used.

Use Bootgen to create a MCS or BIN file. For additional information, see UG996 LibXilSkey for
Zynq-7000 AP SoC Devices, which is located in the OS and Libraries Document Collection
(UG643) [Ref 5].

If using QSPI, run SDK > Program Flash to program the QSPI. If using the SD card, load
BOOT.bin on the SD card and insert the card into the zc702 card slot (J64 SDIO). Set the boot
mode pins to SD and power cycle.

A second method of using the Secure Key Driver is to create a SVF and use iMPACT to play the
SVF. The steps for this flow are given in Appendix E.

Additional information is on the secure key driver is available in OS and Libraries Document
Collection (UG643) [Ref 5].

Advanced Key
Management
Options

The Bootgen Release mode increases key handling security since the BIF attributes use public
rather than private RSA keys. In some organizations, an Infosec staff is responsible for the
production release of a secure embedded product. The Infosec staff's key handling
responsibilities differ from those in the product development organization.The Infosec staff may
use a Hardware Security Module (HSM) for digital signatures and a separate secure server for
encryption. The HSM and secure server typically reside in a secure area. The HSM is a secure
key/signature generation device which generates private keys, encrypts partitions using the
private key, and provides the public part of the RSA key to Bootgen. The private keys do not
leave the HSM. The BIF for Bootgen Release mode uses public keys and signatures generated
by the HSM. The public keys associated with the private keys are ppk.pk1 and spk.pk1.

The HSM accepts hash values of partitions generated by Bootgen and returns a signature
block based on the hash and the secret key. To emulate a HSM, the xil_rsa_sign software is
provided in the xapp1175/xc702_secure_key/xil_rsa_sign_src directory, with instructions on
compiling the executable with a make file. Analogous to the HSM, xil_rsa_sign signs the
hashes provided by Bootgen. To build the xil_rsa_sign executable, change to the
xil_sign_rsa_src directory, copy makefile_linux(makefile_xp) to Makefile, and run:

make xil_rsa_sign

Note: If make fails when Windows is used, edit the source of the GCC in makefile_xp. There are many
embedded processor specific gcc.exe in $XILINX_EDK. Do not use these gcc.exe executables.
Change the GCC to a full path as c:/cygwin/bin/gcc.exe or $XILINX/gnu/MinGW/5.0.0/nt/bin/gcc.exe.

To use xil_rsa_sign, add <path>/xapp1175/zc702_secure_key/xil_rsa_sign_src to $PATH.

http://www.xilinx.com

Advanced Key Management Options

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 50

Figure 33 shows the flow for Bootgen Release mode. The stages labeled "xil_rsa_sign" can be
performed either by the HSM (Standard mode) or by xil_rsa_sign.

In this section, Bootgen is run using the Debug mode and the Release mode. The output image
files, zc702_uboot_dm.mcs and zc702_uboot_rm.mcs, are shown to be identical. To run
Bootgen in Debug and Release modes, change to the xapp1175/zc702_secure_key directory.

Bootgen Debug Mode Step

Run Bootgen as follows:

bootgen -image bootimage_dm.bif -o zc702_uboot_dm.mcs -encrypt efuse

In which bootimage_dm.bif is:

bootimage_dm:
{
[aeskeyfile] efuse.nky
[pskfile] psk.pk1
[sskfile] ssk.pk1
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa] system.bit
[authentication=rsa] u-boot.elf
}

X-Ref Target - Figure 33

Figure 33: Bootgen Release Mode Flow

bootimage_spk.bif

spk.pk1.sha256

spk.pk1.sha256.sig

bootimage_partitions.bif

fsbl.elf.sha256
uboot.elf.sha256
system.bit.sha256

fsbl.elf.sha256.sig
uboot.elf.sha256.sig
system.bit.sha256.sig

bootimage_presign.bif

<design>.mcs|bin

bootgen -generate_hashes

Bootgen

xil_rsa_sign -gensig

XAPP1175_28_060613

xil_rsa_sign -gensig

bootgen -generate_hashes

http://www.xilinx.com

Advanced Key Management Options

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 51

Note: This command is not supported on Windows in 14.6.

Bootgen Release Mode Steps

The xapp1175/zc702_secure_key directory provides an example of running Bootgen in
Release mode. The steps in generating the keys and signatures using the Release mode are:

1. Use the following command to create the SPK hash file.

bootgen -image spk.bif -generate_hashes

in which spk.bif is

spk:
{
[spkfile] spk.pk1
}

Bootgen generates the SPK hash spk.pk1.sha256.

2. Run xil_rsa_sign to generate the SPK signature.

xil_rsa_sign -gensig -sk psk.pk1 -data spk.pk1.sha256 -out
spk.pk1.sha256.sig

3. Generate the partition hashes using the following bootgen command.

bootgen -image bootimage_partitions.bif -o temp.txt -encrypt efuse
-generate_hashes

where the BIF is

bootimage_partitions:

{
[ppkfile] ppk.pk1
[spkfile] spk.pk1
[spksignature] spk.pk1.sha256.sig
[bootloader, encryption=aes, authentication=rsa] fsbl.bin
[encryption=aes, authentication=rsa] system.bit
[authentication=rsa] u-boot.elf
}

Bootgen generates fsbl.elf.0.sha256, u-boot.elf.0.sha256,
u-boot.elf.1.sha256, and system.bit.0.sha256. Since some ELF files consists
of two partitions (separate program text and MMU blocks), there may be two SHA256 files
for some partitions. The image is not built yet. Hashes are generated.

4. Use xil_rsa_sign to generate the signatures of the hashes just created.

xil_rsa_sign -gensig -sk ssk.pk1 -data fsbl.elf.0.sha256 -out
fsbl_debug.elf.0.sha256.sig
xil_rsa_sign -gensig -sk ssk.pk1 -data system.bit.0.sha256 -out
system.bit.0.sha256.sig
xil_rsa_sign -gensig -sk ssk.pk1 -data u-boot.elf.0.sha256 -out
u-boot.elf.0.sha256.sig

These operations generate signatures for the SSK and partitions. Create an image with the
following bootgen command.

bootgen -image bootimage_presign.bif -o zc702_u-boot.mcs -encrypt efuse

in which the BIF is

bootimage_presign:
{
[ppkfile] ppk.pk1
[spkfile] spk.pk1

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 52

[spksignature] spk.pk1.sha256.sig
[bootloader, encryption=aes, authentication=rsa,
presign=fsbl.elf.0.sha256.sig] fsbl.elf
[encryption=aes, authentication=rsa, presign=system.bit.0.sha256.sig]
system.bit
[encryption=aes, authentication=rsa, presign=u-boot.elf.0.sha256.sig]
u-boot.elf
}

Bootgen Debug and Release modes generate an identical MCS / BIN image. To verify this, run

diff zc702_uboot_dm.mcs zc702_uboot_rm.mcs

In xil_rsa_sign, a make file is provided to run these steps. Edit xil_rsa_sign and bin to use the
correct paths. Then run

make clean
make all

The default is to create zc702_*.bin files. To create MCS files, change bin to mcs in the
Makefile.

Secure
Embedded
Systems
Applications

This section provides applications which use the security features in Zynq. A number of
multiboot examples are provided that combine security and high reliability. The GDB debugger
is used to analyze the RSA authentication and the multiboot flow using the ps_autherr multiboot
reference design. Two methods of testing Linux boot time using QSPI are described. The use
of Bootgen to create a user defined field in the authentication certificate is provided. The
zc702_data reference system shows how to load a data file into the Zynq device’s secure
storage. The use of hierarchical control of the JTAG debug port for different security
requirements is discussed.

Multiboot

Multiboot is used to ensure that the device boots a golden image in the event of a failure to boot
the original update boot image. Examples of multiboot are given in the zc702_multiboot
reference system. Alternative multiboot implementations are possible. In this implementation,
the update and golden image are identical, with the intent that the golden image is a backup if
there is a problem loading the update image. The term “fallback” is sometimes used for this
functionality.

A different multiboot requirement provides a software update. If the software update image fails
to load, the FSBL loads the original image. For device security, it is critical that the device boot
to a known working state. The multiboot methodology provided can be used for either of these
multiboot requirements.

The multiboot systems are intended to show how to create testable multiboot systems. To be
testable, an intentional failure must be introduced into the system. For the zc702_multiboot
systems, Figure 34 shows the layout of QSPI for multiboot using three images. The first image
is the FSBL image, located at 0x0. The second image is the update image, located at
0x400000. The third image is the golden image, located at 0xA00000. All images use identical
FSBLs. The start addresses of the second and third images can be changed based on the
image size.

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 53

The BIFs for the creating the three images are the bootimage_fsbl.bif,
bootimage_update.bif, and bootimage_golden.bif files. Create MCS files for the
three images using the following Bootgen commands:

bootgen -image bootimage_fsbl.bif -o fsbl.mcs -encrypt efuse
bootgen -image bootimage_update.bif -o update.mcs -encrypt efuse
bootgen -image bootimage_golden.bif -o golden.mcs -encrypt efuse

Note: In the xapp1175/zc702_multiboot directory, there a five multiboot systems. This section provides
generic instructions to any of the examples. Change to the multiboot system directory of interest (e.g.
ps_autherr) and follow the steps listed in this section.

For the zc702_multiboot examples, the update image is intentionally corrupted. Note that the
image output of Bootgen is corrupted, not the partition input into Bootgen. In multiboot, the
corrupted image is detected in the boot process, followed by a load of the uncorrupted golden
image.

As an example, in the xapp1175/zc702_multiboot/ps_autherr system, the intent is to induce a
RSA error in the software (PS). After creating update.mcs as shown previously in this section,
use

cp update.mcs update.mcs$

so that an original version is kept. The diff instruction can be used to verify that the corruption
was done. The corruption to induce an RSA authentication error is done in line 15900 of
update.mcs. The update.mcs$ is the original update MCS file, which in this case is the
same as the golden MCS image.

X-Ref Target - Figure 34

Figure 34: zc702_multiboot Flash Layout

XAPP1175_56_080213

FSBL

FSBL

system_corrupt.bit

u-boot.elf

FSBL

u-boot.elf

system.bit

0x0

0x400000

0xA00000

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 54

Figure 35 shows the use of the SDK > Program Flash to write the FSBL image to QSPI
location 0x0. Repeat this process, programming update.mcs to location 0x400000, and
golden.mcs to location 0xA00000.

Note: In software releases prior to 14.7 the SDK Program Flash may not program multiple images into
QSPI correctly.

A second method to load the three images for the zc702_multiboot examples is to use U-Boot.
Use the following steps to use U-Boot to load the images.

1. Create the images with the BIN output format using the following bootgen commands:

bootgen -image bootimage_fsbl.bif -o fsbl.bin -encrypt efuse

bootgen -image bootimage_update.bif -o update.bin -encrypt efuse

bootgen -image bootimage_golden.bif -o golden.bin -encrypt efuse

2. Corrupt update.bin as follows:

cp update.bin update.bin$

Use a hex editor (such as gvim or hd) as in the following example:

gvim update.bin

The bitstream starts at 0x194C0.

Change a character in a line such as line 19570.

Save the update.bin file.

3. Verify the change with:

diff update.bin update.bin$

4. In the zc702_multiboot/ready_for_download directory, the BOOT.bin file includes the
FSBL and U-Boot partitions. When this BOOT.bin is booted from the SD card, U-Boot is

X-Ref Target - Figure 35

Figure 35: Programming FSBL Image

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 55

run on Zynq. Copy BOOT.bin, fsbl.bin, update.bin and golden.bin to the SD card.
Set the Boot Mode to SD. Open a communication terminal and power cycle.

Enter the commands in steps 5-12 at the U-Boot prompt.

5. mmcinfo

6. fatload mmc 0 0x100000 fsbl.bin

7. sf probe 0 0 0

8. sf write 0x100000 0 0x20000

9. fatload mmc 0 0x100000 update.bin

10. sf write 0x100000 0x400000 ${filesize}

11. fatload mmc 0 0x100000 golden.bin

12. sf write 0x100000 0xA00000 ${filesize}

13. Power down. Change from SD to QSPI boot mode. Power up.

Figure 36 shows the programming of QSPI using U-Boot for multiboot operation. This is a
display of the commands provided in steps 5-12 of this procedure.

View the log output displayed in the communication terminal to verify that multiboot functions as
expected. If the multiboot successfully loads the golden image, the U-Boot prompt is displayed
in the communication terminal window, and DS19 blinks after the successful load of system.bit.
This indicates that the multiboot procedure successfully loads the golden image after the load
of the update image failed.

The FSBL debug log provides definitive verification that the multiboot operation functions as
designed. The FSBL debug log indicates the number of partitions, and for each partition, the

X-Ref Target - Figure 36

Figure 36: Programming with U-Boot

X1175_42_060613

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 56

load address, length, whether the partition is encrypted and/or RSA signed. All DEVC register
values are displayed for each partition. These registers are defined in the Zynq-7000 All
Programmable SoC Technical Reference Manual (UG585) [Ref 6]. While DEVC register values
make the debug log relatively long, much of the information is repetitive, so the debug log is
easy to read. A portion of the FSBL debug log file is shown in Figure 37.

X-Ref Target - Figure 37

Figure 37: FSBL Debug Log Output

X1175_43_060613

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 57

In the communication terminal, save the log file as shown in Figure 38. This allows the
complete debug log to be reviewed easily in a text editor.

The multiboot reference design provides several multiboot systems. To test that multiboot
functions correctly in response to a contrived error, the systems require the development of a
working image and an image which fails in a specific manner. Since the failure mode is not
always the expected failure mode, the user must examine the log file to verify that the cause of
the multiboot is the one intended.

In some multiboot systems, the error is generated correctly, but the error is not the cause of the
multiboot. The BIF needs to be constructed so that the expected failure mode occurs. Using the
zc702_pl_encerr system as an example, an authentication error can mask an encryption error.
To prevent this, omit the [authentication=rsa] attribute on the partition in which an encryption
error is intended.

Table 3 lists zc702_multiboot systems. In the examples, independent hello_update and
hello_golden ELFs are used. The C print statements in the hello partitions indicate which
partition is running. In the zc702_ps_autherr system, the golden image is booted after an
authentication error in the software (PS).

The steps to create and run the zc702_ps_autherr project are:

1. Use the following BIF, bootimage_update.bif, for the update image.

X-Ref Target - Figure 38

Figure 38: Capturing Multiboot Log

Table 3: Multiboot Examples

Project BIF Error Log

zc702_ps_autherr ps_autherr.bif update_ps_autherr.bin ps_autherr.log

zc702_pl_autherr pl_autherr.bif update_pl_autherr.bin pl_autherr.log

zc702_pl_encerr pl_encerr.bif update_pl_encerr.bin pl_encerr.log

zc702_ps_checksum ps_checksum.bif update_s_checksum.bin ps_checksum.log

zc702_pl_checksum pl_checksum.bif update_pl_checksum.bin pl_checksum.log

X1175_44_052313

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 58

the_image
{
[pskfile] psk.pk1
[sskfile] ssk.pk1
[aeskeyfile] efuse.nky
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[authentication=rsa] hello_update.elf
}

2. Use Bootgen to create the update.bin file:

bootgen -image bootimage_update.bif -o update.bin -encrypt efuse
Use the gvim text editor (or similar) to insert an error:
gvim update.bin

3. As shown in Figure 39, run:

Tools -> Convert to Hex

to view update.bin file in hex format.

X-Ref Target - Figure 39

Figure 39: Using gvim to Generate An Error

X1175_45_060613

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 59

4. As shown in Figure 40, search for Hello, which occurs on line 01eba0.
X-Ref Target - Figure 40

Figure 40: Inducing an Authentication Error

X1175_46_060613

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 60

5. As shown in Figure 41, change the first nibble on line 1eba0 from 4865 to 5865. Notice that
Hello changes to Xello. Enter

Tools > Convert Back

and save update.bin.

As shown earlier in this section, run steps 5-13 at the U-Boot prompt to write QSPI and boot the
system. This process can be used for all of the multiboot examples. This procedure can be
used to construct custom multiboot systems.

FSBL Debugging

In the previous section, the intent is to show how to develop a multiboot solution rather than
provide an end solution. The FSBL has a central role in multiboot. The FSBL debug log is
effective at understanding the behavior of the FSBL during the multiboot process. A second
approach to analyze the multiboot process is to use GDB to step through the FSBL. Analyzing
the FSBL in GDB is useful in understanding the behavior of the FSBL in loading partitions,
multiboot, and RSA authentication.

X-Ref Target - Figure 41

Figure 41: Update File with PS Authentication Error

X1175_47_060613

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 61

Figure 42 shows the setup of a debug session in SDK. Click

Run > Debug Configuration

and select the fsbl.elf to debug.

X-Ref Target - Figure 42

Figure 42: Starting a Debug Session in SDK

X1175_48_060613

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 62

Figure 43 shows the GDB debugger in SDK. This is the ps_autherr system in the multiboot
reference designs. In this system, RSA authentication fails in the hello_update partition. The
debugger location is the code pointing to the Authentication Certificate.

X-Ref Target - Figure 43

Figure 43: Running the GDB Debugger on the FSBL in SDK

X1175_49_060613

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 63

Figure 44 shows the GDB debugger after stepping to the location which verifies the SPK
signature.

X-Ref Target - Figure 44

Figure 44: RSA Verification of SPK

X1175_50_060613

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 64

Figure 45 shows GDB at the RSA code which verifies the partition.

Measuring Boot Time

Boot times are a function of the embedded device boot mode, the NVM configuration and
speed, and the size of the partitions loaded. In most cases, the configuration of NVM is different
than that of the ZC702 Evaluation Board. Contact a Xilinx field application engineer (FAE) for
boot time estimates for non-secure and secure boot modes. For information on flash devices
supported in the Zynq-7000 AP SoC tools, refer to AR50991.

The zc702_linux_trd image can be used to determine an approximate order of magnitude of the
QSPI boot time. When the ZC702 board is used, it is relatively easy to compare non-secure and
secure boot times by creating BIFs which include and exclude the security functionality. There
is not a measurable difference in the non-secure and secure boot times for the Petalinux builds.

X-Ref Target - Figure 45

Figure 45: RSA Verification of Partition

X1175_51_060613

http://www.xilinx.com
http://www.xilinx/com/support/answers/50991.htm

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 65

A second method of investigating boot time is to enable the FSBL performance measurement
as shown in Figure 46.

User Defined Field in Authentication Certificate

The BIF for use case 15 provides a User Defined Field (UDF) in the Authentication Certificate.
The following are potential uses of the 56 Byte UDF at offset 0x8.

• Software Versioning

• Software Provided Certificate

• Time Stamp

• Partition Identifier/Version

The UDF is written using Bootgen with the flow given in this section. In the device, processing
the information in the UDF is typically done in the FSBL. The FSBL code must be written by the
user.

To generate the user defined field, create the uboot_v10.hex file and a BIF as follows.

the_image:

{
[pskfile] psk.pk1
[sskfile] ssk.pk1
[aeskeyfile]efuse.nky
[bootloader, authentication=rsa, encryption=aes]fsbl.elf
[authentication=rsa, udf_data=uboot_v10.hex] u-boot.elf
}

The scope of the udf_data attribute is limited to the partition for which it is specified,
u-boot.elf in the previous BIF. The hex file can contain up to 56 bytes. If the hex file contains
less than 56 bytes, Bootgen pads the user defined field (UDF) with 0s to extend the UDF to
56 bytes. An error occurs if the udf_data attribute is specified for a partition in which
authentication=none, the hex file does not exist or is not readable, it contains more than
56 bytes, or uses a format other than hex.

X-Ref Target - Figure 46

Figure 46: Setting the FSBL_PERF Option in SDK

X1175_52_060613

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 66

As an example, suppose zc702_udf.hex contains

1234 5678 9ABC DEF0 9456 f232 227b dd70.

Figure 47 shows the UDF in the authentication certificate for this zc702_udf.hex.

Loading Data Partitions

In addition to ELF and BIT partitions, Bootgen can load data partitions. Typical application
requirements for data partitions are DSP coefficients or health and financial records. Bootgen
attributes allow the data partition to be encrypted and/or authenticated. An example BIF is:

the_image
{
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa] hello.elf
[encryption=aes, authentication=rsa, load=0xFFFFC000] coefficients.bin
}

An example data file, coefficients.bin, contains 0101010111001100.

To verify that the data file is loaded into OCM, disable the JTAG port if necessary, and run a
XMD mrd 0xFFFFC000 8 command.

Using the DEVCFG and SLCR Registers for Boot Options

The DEVCFG registers used in boot are the Control, Lock, CFG, and MCTRL registers, located
at offsets from 0xF8007000. There are also general lock registers in the SLCR located at

X-Ref Target - Figure 47

Figure 47: User Defined Field in the Authentication Certificate

X1175_53_060613

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 67

0xF8000000. The TRM provides register definitions. Since the CTRL register is used often,
Table 4 defines this register for reference. Some control bits are triplicated for enhanced safety
and security.

Table 4: Control Register at 0xF8007000

Name Bits Description

FORCE_RST 31 Forces PS into secure lockdown

PCFG_PROG_B 30 Resets the PL

PCFG_POR_CNT_4K 29 Controls the POR timer

Reserved 28

PCAP_PR 27 Selects between PCAP and ICAP for PL reconfiguration

PCAP_MODE 26 Enables PCAP interface

PCAP_RATE_EN 25 Selects data rate

MULTIBOOT_EN 24 Enable multiboot out of reset. Cleared by PS_POR_B.

JTAG_CHAIN_DIS 23 Disables JTAG Chain

Reserved 22:16

User Mode 15 0 indicates CPU is executing BootROM code

Reserved 14:13

PCFG_AES_FUSE 12 0 - BBRAM, 1 - EFUSE

PCFG_AES_EN 11:9 000 - Disable AES; 111 - Enable AES; Others - Lockdown

SEU_EN 8 0 - Ignore SEU signal from PL; 1 - Lockdown if SEU received.

SEC_EN 7 0 - PS was not booted securely; 1- PS was booted securely

SPNIDEN 6 0 - Disable Non-invasive Debug

SPIDEN 5 0 - Diable Secure Invasive Debug

NIDEN 4 0 - Disable Non-invasive Debug

DBGEN 3 0 - Disable Invasive Debug

DAP_EN 2:0 111 - Enable ARM DAP

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 68

JTAG Debug

In Zynq-7000 AP SoC, the JTAG port is used to load software and the bitstream, load the AES
key, control information, and for debug. If not disabled, JTAG ports can be used by an adversary
to insert malware, and read configuration memory and registers. The JTAG ports must be
disabled whenever it is not used in a legitimate debug operation.

The device can be debugged using a DAP controller and/or a JTAG controller. The DAP JTAG
chain and PL JTAG chain can be concatenated or used independently. When used
independently, the full SoC/FPGA does not need to be exposed to an adversary. For example,
if debug only requires access to the PL, the user can select that only PL JTAG chain is used.
This prevents access to the PS.

Figure 48 shows the independent and cascaded JTAG chains.

Zynq provides hierarchical control of the JTAG port. This allows different methods to control
access to the debug ports based on security requirements. Security requirements may change
over the life cycle the embedded device. There are three methods to disable the JTAG debug
ports. Prior to fielding an embedded device with Zynq, a one-time programmable eFUSE bit
can permanently disable access to the debug ports. Programming this eFUSE bit is irreversible,
and debug ports remain disabled after powering down and recycling power.

The second method, which can be used only if the debug port disable eFUSE is not blown,
disables/enables debug access port using the JTAG_CHAIN_DISABLE, DAP_EN, SPINDEN,
SPIDEN, NIDEN, DBGEN bits in the Control register at 0xF8007000 (see Table 4). The debug
access control is provided independently for the two JTAG chains or the concatenated chain.

In the third method, a lock register provides semi-permanent disabling of access to the debug
ports. In this method, the debug port access disable remains in effect until a power cycle.

In a secure boot, the JTAG port is disabled early by the BootROM code. Users who will not use
the debug port after product release can disable the JTAG port permanently by writing the
eFUSE Disable JTAG register. The disable is done using iMPACT or the Secure Key Driver.
Figure 49 shows using iMPACT to write the eFUSE which disables the JTAG port.

X-Ref Target - Figure 48

Figure 48: JTAG Chains

PS

PL

ARM DAP

FPGA TAP

PS

PL

ARM DAP

FPGA TAP

Cascade Mode

Independent Mode

XAPP1175_54_053113

http://www.xilinx.com

Secure Embedded Systems Applications

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 69

To use the Secure Key Driver, change the following line in xilskey_input.h.

#define XSK_EFUSEPL_DISABLE_JTAG_CHAIN TRUE

Use the steps provided in the Secure Key Driver section to compile and run the driver.

Disabling JTAG Using the DEVCFG CTRL Register

If the JTAG_CHAIN_DISBLE eFUSE is not blown, the CPU can enable the JTAG port by writing
to CTRL(23)= 0x0. After a secure boot, enabling the JTAG port is necessary to debug a Zynq
device.

The zc702_jtag_en system shows how to enable JTAG after a secure boot. The BIF creates a
secure system, with authentication and encryption. In this project, the FSBL is modified so that
the JTAG port is unlocked at the end of FSBL execution. The following code is added to the
FsblHookBeforeHandoff function in fsbl_hook.c.

ctrl_reg = Xil_In32(0xF8007000);
 fsbl_printf(DEBUG_INFO,"Before 0xF8007000 = 0x%08x\r\n");
 ctrl_reg = ctrl_reg & (~(1<<23));
 ctrl_reg = ctrl_reg | 0x7F;

Xil_Out32(0xF8007000,ctrl_reg);

ctrl_reg = Xil_In32(0xF8007000);
fsbl_printf(DEBUG_INFO,"After 0xF8007000 = 0x%08x\r\n");

Without this added FSBL code, the JTAG port is locked, and cannot be accessed with iMPACT
or XMD. With this code, JTAG access is enabled at the end of FSBL execution. Secure systems
require a more sophisticated method of providing access to the JTAG port. After debug, the
JTAG port must be disabled. This can be done using a basic modification of the code previously
provided in this section to enable the JTAG port. Suppose a user or technician needs to debug
an embedded device which has booted securely. A GPIO interrupt tied to a pushbutton on the

X-Ref Target - Figure 49

Figure 49: Disabling the JTAG Port Using iMPACT

X1175_55_060613

http://www.xilinx.com

Conclusion

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 70

board is generated, requesting JTAG access. The interrupt handler verifies a password before
enabling the JTAG port. The user or technician indicates that the debug session is done by
pressing another button tied to a second GPIO interrupt. The interrupt handler then disables
the JTAG port.

Conclusion Secure boot is easy to implement in Zynq-7000. Since Zynq-7000 provides the functionality
without using the resources of the PL, the incremental cost to boot securely is minimal. Secure
boot protects the embedded system against a number of malicious attacks. Zynq provides
security options to support different security requirements.

Appendix A Glossary - Acronyms

The following terms are used in this application note. In most cases, the terms are defined in
the Boot Architecture section.

• Advanced Encryption Standard/ Hashed Message Authentication Code (AES/HMAC)

• Authentication Certificate (AC)

• Bitgen

• Bootgen

• Boot Header (BH)

• Boot Image Format (BIF)

• Battery Backed RAM (BBRAM)

• Device Configuration Interface (DevC)

• eFUSE array

• Secure Key Driver

• First Stage Boot Loader (FSBL)

• ISE Design Suite

• Image

• iMPACT

• Partition

• Partition Header

• Programmable Logic (PL)

• Processor System (PS)

• Primary Secret Key (PSK)

• Primary Public Key (PPK)

• Rivest, Shamir, Adleman (RSA)

• Secondary Secret Key (SSK)

• Secondary Public Key (SPK)

• Software Development Kit (SDK)

• Secure Hash Algorithm (SHA)

• Secure Storage

• U-Boot

• Xilinx Platform Studio (XPS)

http://www.xilinx.com

Appendix B

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 71

Appendix B Use Cases for User Selectable Security Functionality

Using BIF file attributes, users specify, on a partition basis, if a partition is to be RSA
authenticated and if it is to be AES/HMAC encrypted/authenticated. Table 5 provides sample
use cases of images in which AES/HMAC encryption and RSA authentication are specified on
a partition basis. Other use cases are possible. Most of the use cases in Table 5 contain the
same partitions used in the TRD. Use cases 11-14 show a single data partition in the BIF. Like
software and bitstream partitions, data partitions can be included in the initial boot image (i.e.
with an FSBL partition).

Table 5: Use Cases for Specifying Security

BootROM RSA RSA AES/HMAC

Use Case 1 - NonSecure Boot

fsbl.elf

system.bit

u-boot.elf

uImage.bin

devicetree.dtb

uramdisk.image.gz

sobel_cmd.elf

Use Case 2 - Secure Boot, AES/HMAC partitions

fsbl.elf x

system.bit x

u-boot.elf x

uImage.bin x

devicetree.dtb x

uramdisk.image.gz x

sobel_cmd.elf x

Use Case 3 - Secure Boot, RSA authenticate FSBL, AES/HMAC partitions

fsbl.elf x x

system.bit x

u-boot.elf x

uImage.bin x

devicetree.dtb x

uramdisk.image.gz x

sobel_cmd.elf x

Use Case 4 - Secure Boot, RSA authenticate all files

fsbl.elf x x

system.bit x

u-boot.elf x

uImage.bin x

devicetree.dtb x

http://www.xilinx.com

Appendix B

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 72

uramdisk.image.gz x

sobel_cmd.elf x

Use Case 5 - Secure Boot, RSA authenticate FSBL

fsbl.elf x x

system.bit

u-boot.elf

uImage.bin

devicetree.dtb

uramdisk.image.gz

sobel_cmd.elf

Use Case 6 - Secure Boot RSA authenticate and AES/HMAC all partitions

fsbl.elf x x

system.bit x x

u-boot.elf x x

uImage.bin x x

devicetree.dtb x x

uramdisk.image.gz x x

sobel_cmd.elf x x

Use Case 7 - Secure Boot, RSA authenticate code, AES/HMAC PL bitstream

fsbl.elf x x

system.bit x x

u-boot.elf x

uImage.gz x

devicetree.dtb x

uramdisk.image.gz x

sobel_cmd.elf x x

Use Case 8 - Secure Boot, AES/HMAC FSBL, PL bitstream, Application

fsbl.elf x

system.bit x

u-boot.elf

uImage.bin

devicetree.dtb

uramdisk.image.gz

sobel_cmd.elf x

Use Case 9 - Non-secure Multiboot - 3 Images shown

Image 1

fsbl.elf

Table 5: Use Cases for Specifying Security (Cont’d)

BootROM RSA RSA AES/HMAC

http://www.xilinx.com

Appendix B

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 73

Image 2

fsbl.elf - standard

system.bit - standard

u-boot.elf - standard

Image 3

fsbl.elf - golden

u-boot.elf - golden

PL Bitstream - golden

Use Case 10 - Secure Multiboot - 3 Images shown

Image 1

fsbl.elf x x

Image 2

fsbl.elf - update

system.bit - standard x x

u-boot.elf - standard x

Image 3

fsbl.elf - golden x x

system.bit - golden x x

u-boot.elf - golden x

Use Case 11 - Non-secure Binary Data File - As Is, Not Bootgen source

datafile.bin

Use Case 12 - Authenticated Binary Data File

datafile.bin x

Use Case 13 - AES/HMAC Encrypted Binary Data File

datafile.bin x

Use Case 14 - AES/HMAC Encrypted - RSA Authenticated Binary File

datafile.bin x x

Use Case 15 - User Defined Field in Authentication Certificate

Data File x x

Use Case 16 - Release Mode Bootgen - Authenticated U-Boot

fsbl.elf x x

u-boot.elf x

Use Case 17 - Release Mode Bootgen - Authenticated TRD

fsbl.elf x x

system.bit x x

u-boot.elf x

uImage.gz x

Table 5: Use Cases for Specifying Security (Cont’d)

BootROM RSA RSA AES/HMAC

http://www.xilinx.com

Appendix C

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 74

Appendix C BIFs for Bootgen Debug Mode

BIFs for systems defined in Images, Partitions, and Authentication Certificates are as follows:

Use Case 1 - Non-secure boot BIF example

image: {
[bootloader] zynq_fsbl_0.elf
system.bit
u-boot.elf
ulinux.bin
devicetree.dtb
uramdisk.image.gz
sobel_cmd.elf
}

Note: If the RSA Enable eFUSE is programmed, the FSBL must be authenticated, and the BIF in Use
Case 1 will not work. For this case, Use Case 5 should be used.

Use Case 2 - All partitions are encrypted

image: {
[aeskeyfile] system.nky
[bootloader, encryption=aes] zynq_fsbl_0.elf
[encryption=aes] system.bit
[encryption=aes] u-boot.elf
[encryption=aes] ulinux.bin
[encryption=aes] devicetree.dtb
[encryption=aes] uramdisk.image.gz
[encryption=aes] sobel_cmd.elf
}

Use Case 3 - FSBL is RSA authenticated; All partitions are encrypted

image: {
[aeskeyfile] system.nky
[pskfile] uc3_psk.pk1
[sskfile] uc3_ssk.pk1
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[encryption=aes] system.bit
[encryption=aes] u-boot.elf
[encryption=aes] uImage.bin
[encryption=aes] devicetree.dtb
[encryption=aes] uramdisk.image.gz
[encryption=aes] sobel_cmd.elf
}

Use Case 4 - All partitions are RSA authenticated

Note: The FSBL and PL are authenticated using the first specified SPK file, and U-Boot, linux, and hello
are authenticated with the linux_ssk.pk1 file.

image: {
[aeskeyfile] system.nky
[pskfile] uc4_1_psk.pk1
[sskfile] uk4_1_ssk.pk1

devicetree.dtb x

uramdisk.image.gz x

sobel_cmd.elf x x

Table 5: Use Cases for Specifying Security (Cont’d)

BootROM RSA RSA AES/HMAC

http://www.xilinx.com

Appendix C

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 75

[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[authentication=rsa] system.bit
[sskfile] linux_ssk.pk1
[authentication=rsa] u-boot.elf
[authentication=rsa] uImage.bin
[authentication=rsa] devicetree.dtb
[authentication=rsa] uramdisk.image.gz
[authentication=rsa] sobel_cmd.elf
}

Use Case 5 - FSBL is RSA authenticated

image: {
[aeskeyfile] system.nky
[pskfile] uc5_psk.pk1
[sskfile] uc5_ssk.pk1
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
system.bit
u-boot.elf
uImage.bin
devicetree.dtb
uramdisk.image.gz
sobel_cmd.elf
}

Use Case 6 - All partitions are RSA authenticated and AES encrypted

image: {
[aeskeyfile] system.nky
[pskfile] uc6_psk.pk1
[sskfile] uc6_ssk.pk1
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[encryption=aes, authentication=rsa] system.bit
[encryption=aes, authentication=rsa] u-boot.elf
[encryption=aes, authentication=rsa] uImage.bin
[encryption=aes, authentication=rsa] devicetree.dtb
[encryption=aes, authentication=rsa] uramdisk.image.gz
[encryption=aes, authentication=rsa] linux.image.gz
[encryption=aes, authentication=rsa] sobel_cmd.elf
}

Use Case 7- All partitions are RSA authenticated. FSBL, bitstream, and sobel_cmd
application are AES encrypted

image: {
[aeskeyfile] system.nky
[pskfile] psk.pk1
[sskfile] ssk.pk1
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[encryption=aes, authentication=rsa] system.bit
[authentication=rsa] u-boot.elf
[authentication=rsa,load=0x3000000,offset=0x100000] uImage.bin
[authentication=rsa,load=0x2A00000,offset=0x600000] devicetree.dtb
[authentication=rsa,load=0x2000000,offset=0x620000] uramdisk.image.gz
[encryption=aes, authentication=rsa] sobel_cmd.elf
}

Use Case 8 - AES Encrypt FSBL, Bitstream, and application

image: {
[aeskeyfile] system.nky
[bootloader, encryption=aes] zynq_fsbl_0.elf
[encryption=aes] system.bit
[encryption=none] u-boot.elf

http://www.xilinx.com

Appendix C

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 76

[encryption=none] uImage.bin
[encryption=none] devicetree.dtb
[encryption=none] uramdisk.image.gz
[encryption=aes] sobel_cmd.elf
}

Use Case 9 - Non-secure Multiboot

image0: {
[bootloader] zynq_fsbl_0.elf
}

standard_image: {
[bootloader] zynq_fsbl_0.elf
system.bit
u-boot.elf
}

golden_image: {
[bootloader] zynq_fsbl_0.elf
system.bit
u-boot.elf
}

Note: The update and golden images must be located at addresses which are multiples of 32K.

Use Case 10 - Secure Multiboot

image0: {
[aeskeyfile] uc10.nky
[pskfile] uc10_psk.pk1
[sskfile] uc10_ssk.pk1
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
}
standard_image: {
[aeskeyfile] uc10.nky
[pskfile] uc10_psk.pk1
[sskfile] uc10_ssk.pk1
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[sskfile] bitstream_ssk.pk1
[encryption=aes, authentication=rsa] system.bit
[sskfile] u-boot_ssk.pk1
[authentication=rsa] u-boot.elf
}

golden_image: {
[aeskeyfile] uc10.nky
[pskfile] uc10_psk.pk1
[sskfile] uc10_ssk.pk1
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[sskfile] bitstream_ssk.pk1
[encryption=aes, authentication=rsa] system.bit
[sskfile] u-boot_ssk.pk1
[authentication=rsa] u-boot.elf
}

Note: The update and golden images must be located at addresses which are multiples of 32K.

http://www.xilinx.com

Appendix D

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 77

Use Case 11 - Non-Secure Binary Data File

image:
{
[bootloader] fsbl.elf
hello.elf
datafile.bin
}

Use Case 12 - Authenticated Binary Data File

image: {
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa] hello.elf
[authentication=rsa] datafile.bin
}

Use Case 13 - AES Encrypted Binary Data File

image: {
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa] hello.elf
[encryption=aes] datafile.bin
}

Use Case 14 - AES Encrypted and RSA Authenticated Binary Data File

image: {
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa] hello.elf
[encryption=aes, authentication=rsa] data.bin
}

Note: The implicit attribute [encryption=none] is the default for all partitions.

Use Case 15 - User Defined Field in Authentication Certificate

image
{
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa, udf_data=hello_v10.hex] hello.elf
}

Appendix D Images, Partitions, and Authentication Certificates

This section describes images, partitions, and authentication certificates. Bootgen generates
one image which is loaded into NVM. An image consists of one or more partitions. If a partition
in an image is RSA authenticated, an authentication certificate follows the partition in the
image.

Table 6 shows a sample image format for Use Case 7 in Images, Partitions, and Authentication
Certificates. The fields for the FSBL Authentication Certificate are shown for the FSBL partition.
For the other partitions, only the location of the Authentication Certificate is shown.
Authentication Certificates for all partitions have the same format.

Table 6: Sample Image Format for Use Case 7

Boot Header

Partition Header Table

FSBL Data Segment

512-Bit Alignment - Padding 0x

http://www.xilinx.com

Appendix D

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 78

Bootgen generates an image which typically consists of the Boot Header, FSBL, PL bitstream
and multiple software partitions.

For the use cases in Table 5, Bootgen generates images in the format shown in the next three
tables.

The image format for use cases 1 and 2 is shown in Table 7. In these use cases, RSA
authentication is not used.

Authentication Certificate Header

User Defined Field - 56 bytes

RSA PPK - 2 x 2048 + 512 Bits

RSA SPK - 2 x 2048 + 512 Bits

RSA SPK Signature - 2048 Bits

FSBL Signature - 2048 Bits

PL Bitstream - system.bit

Bitstream Authentication Certificate

U-Boot

U-Boot Authentication Certificate

Linux - uImage.bin

uImage.bin Authentication Certificate

devicetree.dtb

devicetree.dtb Authentication Certificate

uramdisk.image.gz

uramdisk.image.gz Authentication Certificate

Sobel Cmd partition

Sobel Cmd Authentication Certificate

Table 7: Image Format for Use Cases 1 and 2

Boot Header

Image Header Table

Partition Header Table

FSBL

PL Bitstream

U-Boot

Linux

Sobel Cmd Application

Table 6: Sample Image Format for Use Case 7

http://www.xilinx.com

Appendix D

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 79

The image for use cases 3 and 5 is shown in Table 8. In these use cases, only the FSBL is RSA
authenticated. In use case 3, all partitions are routed to the AES/HMAC engine. In use case 5,
no partition is routed to the AES/HMAC engine.

The image format for use cases 4, 6, and 7 is shown in Table 9.

Partitions

Partitions are composed of two or three sections:

• Partition header, which stores information about the partition layout.

• Physical partition which contains the data and padding, optional expansion space

• Authentication certificate if the partition is authenticated

Table 8: Image Format for Use Cases 3 and 5

Boot Header

Image Header Table

Partition Header Table

FSBL

Authentication Certificate

PL Bitstream

U-Boot

Linux

Sobel Cmd Application

Table 9: Image Format for Use Cases 4, 6, and 7

Boot Header

Image Header Table

Partition Header Table

FSBL

FSBL Authentication Certificate

PL Bitstream

PL Bitstream Authentication Certificate

U-Boot

U-Boot Authentication Certificate

Linux

Linux Authentication Certificate

Sobel Cmd Application

Sobel Cmd Authentication Certificate

http://www.xilinx.com

Appendix D

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 80

Table 10 shows the format of the Partition Header.

Authentication Certificates

An authentication certificate is used with each partition (FSBL, software, and bitstream)
specified to be authenticated. The format of the AC is the same for all partitions, and is shown
in Table 11.

The PPK Mod + PPK Modular Extension + PPK exponent are 516 bytes. Padding is 60 bytes or
480 bits of all 0.

For the Authentication Certificate offsets 0x140, 0x380, Bootgen computes a modular
extension which is used in Montgomery reduction to decrease code verification time.

Table 10: Partition Header

Offset Description

0x0 Partition Data Word Length

0x4 Decrypted Data Word Length

0x8 Total Partition Word Length (includes AC)

0xC Destination Load Address (PS)

0x10 Destination Execution Address (PS)

0x14 Data Word Offset in the Image

0x18 Attribute Bits - PS - Bit 4; PL - Bit 5

0x1C Section Count

0x20 Checksum Word Offset

0x24 Image Header Word Offset

0x24 - x38 Unused

0x3C Header Checksum

Table 11: Authentication Certificate

Offset Length Field Notes

0x0 0x4 Authentication Certificate
Header

0x4 0x4 Authentication Certificate Length

0x08 0x3C User Defined Field 56 bytes

0x44 0x100 PPK Modulus

640 Bytes, Little Endian0x144 0x100 PPK Modulus Extension

0x244 0x04 PPK Exponent

0x248 0x3C Padding 480 0s

0x284 0x100 SPK Modulus

640 Bytes, Little Endian0x384 0x100 SPK Modulus Extension

0x484 0x04 SPK Exponent

0x488 0x3C Padding 480 0s

0x4C4 0x100 SPK Signature (sha256^Dp) mod Np LE

0x5C4 0x100 Partition Signature (sha256^Ds) mod Ns LE

http://www.xilinx.com

Appendix D

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 81

RSA authentication proceeds by calculating a SHA256 over the necessary data, which results
in a 256 bit (32 byte) integer. This hash integer is padded according to PKCS #1v1.5 to 2048
bits (256 bytes). The signature blocks are calculated as the modular exponentiation of the
padded 2048 bit hash, using the secret exponent (D) of the key as the exponent in the
calculation. The OpenSSL equivalent function is BN_mod_exp_mont(). The SPK signature
uses the primary key (denoted with a P subscript) while the Partition Signature uses the
secondary key (denoted with a S subscript). All calculations are done in 2048 bit base, so that
the padded hash value and the signature are 2048 bits or 256 bytes. The data is stored in little
endian order, with the LSB first and the MSB last.

The padded hash integer defined in Table 12 is used in the native storage of bootgen as well as
the *.sha256 files that are created with the -generate_hashes command line option.

When using the [spksignature] or [presign=] attributes to load in an externally calculated
signature block, the format must be identical to the final signature block defined in Table 13.
There is no processing or reversing of byte order when reading in the signature block from an
external file; the data is copied exactly into the AC.

The Authentication Header is defined in the Table 14.

Table 12: PKCS #1v1.5 Padded SHA256 Hash Field and Format of *.sha256 Hash Files

Bytes Field Value

0:31 Raw SHA256 hash value
(little endian)

Calculated

32:50
PKCS special values 0x20,0x04,0x00,0x05,0x01,0x02, 0x04,

0x03, 0x65, 0x01, 0x48, 0x86, 0x60,
0x09, 0x06, 0x0D, 0x30, 0x31, 0x30

51 zero 0x00

52:253 padding 0xFFs

254 one 0x01

255 zero 0x00

Table 13: RSA2048 Signature Block, and Format of *.sig Files

Bytes Field Value

0:255 signature value (little endian) (sha256 ^Dp) mod Np LE

Table 14: Authentication Certificate Header

Bits Field Value

31:16 Reserved 0s

15:14 Authentication Certificate Format 00: PKCS #1
v1.5

13:12 Authentication Certificate Version 00: Version 1.0

11 PPK Key Type 0: Hash Key

10:9 PPK Key Source 0: eFUSE

8 SPK Enable 1: SPK Enable

7:4 Public Strength 0: 2048

3:2 Hash Algorithm 0: SHA256

1:0 Public Algorithm 1: RSA

http://www.xilinx.com

Appendix E

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 82

Appendix E Programming eFUSEs with the SVF
1. Update the directory path for the ELF field in efuse.opt. The efuse.opt file is provided in

the zc702_secure_key_driver reference system.

2. Run:

xmd -tcl efuse.tcl -opt efuse.opt

As shown in Figure 50, the efuse_out.svf file is created.
X-Ref Target - Figure 50

Figure 50: SVF file efuse_out.svf

X1175_37_052313

http://www.xilinx.com

Appendix E

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 83

Use iMPACT to Play the SVF file

Set up the zc702 board with either the Digilent or Platform USB cable for the JTAG interface.
Set up the cable to the USB UART port. Use iMPACT to download the ELF to program the PPK
hash. This is done by playing the SVF.

1. Invoke iMPACT, initialize the chain, and select Add Xilinx device. As shown in Figure 51,
add efuse_out.svf to the scan chain.

2. Browse to efuse_out.svf.

3. Right click and play efuse_out.svf.

X-Ref Target - Figure 51

Figure 51: Adding efuse_out.svf

X1175_38_052313

http://www.xilinx.com

References

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 84

As shown in Figure 52, this operation writes (or reads) the PPK hash. It writes the AES key.

The selections made in xilskey_input.h define the functionality (read, write) of the SVF.

References 1. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

2. Zynq-7000 All Programmable SoC Software Developers Guide (UG821)

3. Using the Zynq-7000 Processing System to Xilinx Analog to Digital Converter Dedicated
Interface to Implement System Monitoring and External Channel Measurements
(XAPP1172)

4. Solving Today’s Design Security Concerns (WP365)

5. OS and Libraries Document Collection (UG643)

6. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

7. OS and Libraries Document Collection (UG643)

8. Zynq-7000 All Programmable SoC: Concepts, Tools, and Techniques (UG873)

9. Zynq-7000 All Programmable SoC ZC702 Base Targeted Reference Design (UG925)

10. EDK Concepts, Tools, and Techniques (UG683)

11. 7 Series FPGAs Configuration User Guide (UG470)

12. Developing Tamper Resistant Designs with Xilinx Virtex-6 and 7 Series FPGAs
(XAPP1084)

13. Solving Today’s Design Security Concerns (WP365)

14. The DENX U-Boot and Linux Guide: http://www.denx.de/wiki/DULG/Manual

15. RSA http://en.wikipedia.org/wiki/RSA

16. Montgomery Reduction http://en.wikipedia.org/wiki/Montgomery_reduction

17. OS and Libraries Document Collection (UG643)

X-Ref Target - Figure 52

Figure 52: eFUSE Read Operation Results

X1175_39_052313

http://www.xilinx.com
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Montgomery_reduction
OS and Libraries Document Collection
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.denx.de/wiki/U-boot
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/ug873-zynq-ctt.pdf
http://www.xilinx.com/support/documentation/white_papers/wp365_Solving_Security_Concerns.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/edk_ctt.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1084_tamp_resist_dsgns.pdf
http://www.xilinx.com/support/documentation/white_papers/wp365_Solving_Security_Concerns.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/oslib_rm.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1172_zynq_ps_xadc.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_6/oslib_rm.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zynq-7000/zc702_ug/v2_1/ug925-zynq-zc702-base-trd.pdf
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf

Revision History

XAPP1175 (v1.0) September 12, 2013 www.xilinx.com 85

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS
IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Automotive
Applications
Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE
IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS
RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS
THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE
OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A
WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD
LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND
LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Date Version Description of Revisions

09/12/13 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

	Secure Boot of Zynq-7000 All Programmable SoC
	Summary
	Included Systems
	Introduction
	Hardware and Software Requirements
	Boot Architecture
	Hardware Components Used in Boot
	Software Components Used in Boot

	Boot Process
	Boot Modes
	Secure Boot Steps
	Boot Flows

	AES Encryption and RSA Authentication
	Security in Embedded Devices
	Secure System Development
	Booting the TRD Securely
	Building and Booting a Secure System
	Creating a Project Using Xilinx Platform Studio
	Setup the ZC702 Evaluation Board

	Creating a Secure Boot Image
	Bootgen

	Generating and Programming Keys
	Generating Keys
	Secure Key Driver

	Advanced Key Management Options
	Secure Embedded Systems Applications
	Multiboot

	Conclusion
	Appendix A
	Glossary - Acronyms
	Appendix B
	Use Cases for User Selectable Security Functionality

	Appendix C
	BIFs for Bootgen Debug Mode
	Appendix D
	Images, Partitions, and Authentication Certificates
	Appendix E
	Programming eFUSEs with the SVF

	References
	Revision History
	Notice of Disclaimer
	Automotive Applications Disclaimer

