Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/04/2012</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
<tr>
<td>06/06/2012</td>
<td>1.1</td>
<td>Corrected format issue.</td>
</tr>
<tr>
<td>08/29/2012</td>
<td>1.2</td>
<td>Updated Table 3-1 and Table 3-2 for additional devices/packages. Added 680 µF capacitor specification to Table 3-3.</td>
</tr>
<tr>
<td>10/11/2012</td>
<td>1.2.1</td>
<td>Corrected document number (changed UG993 to UG933).</td>
</tr>
<tr>
<td>11/05/2012</td>
<td>1.2.2</td>
<td>Corrected sizing problem in PDF (no content change).</td>
</tr>
<tr>
<td>02/12/2013</td>
<td>1.3</td>
<td>Added Note (^{(2)}) to Table 3-2. Added suggested part numbers to Table 3-3. Modified paragraph under (V_{CCPAUX}) – PS Auxiliary Logic Supply. Modified paragraph under (V_{CCPLL}) – PS PLL Supply. Added Figure 5-3. Modified second to last sentence and added last sentence under (PS_{DDR}__VREF0, PS_{DDR}__VREF1) – PS DDR Reference Voltage. Modified CAUTION! under Configuring the (V_{CCO_MII0}, V_{CCO_MII1}) Voltage Mode and Note under DDR Supply Voltages. Changed Cke connection from a pull-down resistor to a pull-up resistor in Figure 5-5 through Figure 5-7. Updated entire MIO/EMIO IP Layout Guidelines section.</td>
</tr>
<tr>
<td>04/01/2013</td>
<td>1.4</td>
<td>Added XC7Z100 devices to Table 3-1 and Table 3-2. Updated ESR range values in Table 3-3. Changed “0805 Ceramic Capacitor” section heading to Mid and High Frequency Capacitors and modified first paragraph. Removed dimensions, changed “0805” to “0402” in Figure 3-1 and deleted “0402 Ceramic Capacitor” subsection. Deleted last sentence under , Modes and Attributes. Changed “minimum” to “maximum” in third sentence of second paragraph under (V_{CCPLL}) – PS PLL Supply. Added second to last sentence under (PS_{DDR}__VREF0, PS_{DDR}__VREF1) – PS DDR Reference Voltage. Changed “Rup” to “Rterm” in Figure 5-5 and Figure 5-6. Deleted Drst_b from Figure 5-6 and Figure 5-7. Changed Rup pull-up resistor to Rdown pull-down resistor in Figure 5-7. Changed LPDDR2 setting in last row of Table 5-6 to N/A. Updated values in first row of Table 5-9. Changed “Three” different topologies to “two” under DDR Routing Topology. Removed Fly-by topology from Figure 5-8 and Table 5-12. Deleted “NAND (ONFI),” “NOR/Flash/SRAM,” “SPI Master,” “SWDT (System Watch Dog Timer),” and “TTC (Triple Time Counter” subsections from MIO/EMIO IP Layout Guidelines and modified remaining subsections. Changed “EN208” to “EN247” and “DS821” to “PG054” under Additional Resources and Legal Notices in Appendix A.</td>
</tr>
<tr>
<td>09/26/2013</td>
<td>1.5</td>
<td>Added XC7Z010, XC7Z015, and XC7Z030 packages/devices to Table 3-1 and Table 3-2. Changed suggested part number for the 4.7 µF capacitor in Table 3-3. Added DDR ECC unused pins to Table 5-5. Modified Figure 5-6 (Cke pins are now applied to GND via resistor Rdown instead of VTT via Rterm). Expanded first paragraph under DDR Termination. Clarified DDR Termination paragraph. Added fly-by routing to DDR Routing Topology section. Deleted SD/SDIO Peripheral Controller section. Added last sentence under sections IIC and SDIO and second sentence under QSPI. Added Chapter 6, Migration from XC7Z030-SBG485 to XC7Z015-CLG485 Devices.</td>
</tr>
<tr>
<td>Date</td>
<td>Version</td>
<td>Revision</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>12/04/2013</td>
<td>1.6</td>
<td>Changed “DDR3” to “DDR3/3L” throughout document. Updated capacitor quantities and packages in Table 3-1 and Table 3-2. Updated capacitor specifications in Table 3-3. Updated descriptions for VCCPINT – PS Internal Logic Supply and VCCPAUX – PS Auxiliary Logic Supply. Deleted “Capacitor Consolidation Rules” section. Modified next-to-last sentence under PS_DDR_VREF0, PS_DDR_VREF1 – PS DDR Reference Voltage. Added paragraph preceding Table 5-5 and updated Table 5-5. Updated Addr, Command, Ctrl output name in Figure 5-7. Deleted last sentence under DDR Trace Length.</td>
</tr>
<tr>
<td>08/01/2014</td>
<td>1.7</td>
<td>Removed “and Pin Planning Guide” from title. Added recommendation to Recommended PCB Capacitors per Device. Changed VCCO per Bank sub-heading from “100 µF” to 47 µF” in Table 3-1. Added note 6 to Table 3-1. Removed values for VCCPLL and replaced with reference (Note 3) in Table 3-2. Changed “Terminal” type to “Terminal Tantalum” and added “X7U” to 100 µF capacitor in Table 3-3. Modified first paragraph under Noise Limits by removing specifications and adding a reference to the data sheet. Updated second paragraph under Unconnected VCCO Pins. Changed Murata part number from “GRM155R60J475ME47D” to “GRM155R60J474KE19” under Unconnected VCCO Pins. Updated first paragraph under PS_DDR_VRN, PS_DDR_VRP – PS DDR Termination Voltage. Updated Unused DDR Memory. Deleted last two sentences under PS_PARSER – Power on Reset and last sentence under PS_SRST_B – External System Reset. Changed “Boot Mode Pins” section (pins MIO[2] to MIO[8]) to Boot Mode Pin MIO[8]. Modified Figure 5-5 (CKE resistor layout). Modified Figure 5-6 (changed clk signal to differential signals CLK_P/CLK_N and added pull-down resistor to ODT). Added separate column for DDR3L to Table 5-6 and modified values. Clarified DDR Trace Length and DDR Trace Impedance sections. Clarified byte swapping under DDR Routing Topology. Added last paragraph under Ethernet GEM. Deleted “Lower Operating Frequencies (without Feedback Mode)” section from Chapter 6.</td>
</tr>
<tr>
<td>08/05/2014</td>
<td>1.7.1</td>
<td>Updated document to latest user guide template.</td>
</tr>
</tbody>
</table>
Table of Contents

Revision History ... 2

Chapter 1: Introduction
 About This Guide .. 6
 Additional Support Resources ... 6

Chapter 2: PCB Technology Basics
 Introduction .. 7
 PCB Structures .. 7
 Transmission Lines ... 10
 Return Currents .. 11

Chapter 3: Power Distribution System
 Introduction .. 12
 PCB Decoupling Capacitors .. 12
 Basic PDS Principles ... 17
 Simulation Methods .. 31
 PDS Measurements .. 32
 Troubleshooting ... 37

Chapter 4: SelectIO Signaling
 Introduction .. 39
 Interface Types .. 39
 Single-Ended Signaling ... 40

Chapter 5: Processing System (PS) Power and Signaling
 Power ... 51
 PS Clock and Reset .. 56
 Boot Mode Pin MIO[8] ... 56
 Dynamic Memory ... 57
 MIO/EMIO IP Layout Guidelines ... 65
Chapter 6: Migration from XC7Z030-SBG485 to XC7Z015-CLG485 Devices

Introduction ... 69
Differences between XC7Z030-SBG485 and XC7Z015-CLG485 Devices 69

Appendix A: Additional Resources and Legal Notices

Xilinx Resources .. 72
Solution Centers ... 73
References ... 73
Please Read: Important Legal Notices 76
Chapter 1

Introduction

About This Guide

This guide provides information on PCB design for the Zynq®-7000 All Programmable SoC (AP SoC), with a focus on strategies for making design decisions at the PCB and interface level.

This Zynq-7000 All Programmable SoC PCB Design Guide, part of an overall set of documentation on the Zynq-7000 AP SoC, is available on the Xilinx website at www.xilinx.com/zynq.

Additional Support Resources

For additional information regarding PCB materials, traces, and design techniques for high speed signals, refer to chapters four and five of UG483, 7 Series FPGAs PCB Guide. A comprehensive list of all additional resources is provided in Appendix A, Additional Resources and Legal Notices.
Chapter 2

PCB Technology Basics

Introduction

Printed circuit boards (PCBs) are electrical systems, with electrical properties as complicated as the discrete components and devices mounted to them. The PCB designer has complete control over many aspects of the PCB; however, current technology places constraints and limits on the geometries and resulting electrical properties. The following information is provided as a guide to the freedoms, limitations, and techniques for PCB designs using Zynq-7000 AP SoC devices.

This chapter contains the following sections:

- PCB Structures
- Transmission Lines
- Return Currents

PCB Structures

PCB technology has not changed significantly in the last few decades. An insulator substrate material (usually FR4, an epoxy/glass composite) with copper plating on both sides has portions of copper etched away to form conductive paths. Layers of plated and etched substrates are glued together in a stack with additional insulator substrates between the etched substrates. Holes are drilled through the stack. Conductive plating is applied to these holes, selectively forming conductive connections between the etched copper of different layers.

While there are advancements in PCB technology, such as material properties, the number of stacked layers used, geometries, and drilling techniques (allowing holes that penetrate only a portion of the stackup), the basic structures of PCBs have not changed. The structures formed through the PCB technology are abstracted to a set of physical/electrical structures: traces, planes (or planelets), vias, and pads.
Chapter 2: PCB Technology Basics

Traces

A trace is a physical strip of metal (usually copper) making an electrical connection between two or more points on an X-Y coordinate of a PCB. The trace carries signals between these points.

Planes

A plane is an uninterrupted area of metal covering the entire PCB layer. A planelet, a variation of a plane, is an uninterrupted area of metal covering only a portion of a PCB layer. Typically, a number of planelets exist in one PCB layer. Planes and planelets distribute power to a number of points on a PCB. They are very important in the transmission of signals along traces because they are the return current transmission medium.

Vias

A via is a piece of metal making an electrical connection between two or more points in the Z space of a PCB. Vias carry signals or power between layers of a PCB. In current plated-through-hole (PTH) technology, a via is formed by plating the inner surface of a hole drilled through the PCB. In current microvia technology (also known as High Density Interconnect or HDI), a via is formed with a laser by ablating the substrate material and deforming the conductive plating. These microvias cannot penetrate more than one or two layers, however, they can be stacked or stair-stepped to form vias traversing the full board thickness.

Pads and Antipads

Because PTH vias are conductive over the whole length of the via, a method is needed to selectively make electrical connections to traces, planes, and planelets of the various layers of a PCB. This is the function of pads and antipads. Pads are small areas of copper in prescribed shapes. Antipads are small areas in prescribed shapes where copper is removed. Pads are used both with vias and as exposed outer-layer copper for mounting of surface-mount components. Antipads are used mainly with vias. For traces, pads are used to make the electrical connection between the via and the trace or plane shape on a given layer. For a via to make a solid connection to a trace on a PCB layer, a pad must be present for mechanical stability. The size of the pad must meet drill tolerance/registration restrictions. Antipads are used in planes. Because plane and planelet copper is otherwise uninterrupted, any via traveling through the copper makes an electrical connection to it. Where vias are not intended to make an electrical connection to the planes or planelets passed through, an antipad removes copper in the area of the layer where the via penetrates.
Chapter 2: PCB Technology Basics

Lands

For the purposes of soldering surface mount components, pads on outer layers are typically referred to as lands or solder lands. Making electrical connections to these lands usually requires vias. Due to manufacturing constraints of PTH technology, it is rarely possible to place a via inside the area of the land. Instead, this technology uses a short section of trace connecting to a surface pad. The minimum length of the connecting trace is determined by minimum dimension specifications from the PCB manufacturer. Microvia technology is not constrained, and vias can be placed directly in the area of a solder land.

Dimensions

The major factors defining the dimensions of the PCB are PCB manufacturing limits, AP SoC package geometries, and system compliance. Other factors such as Design For Manufacturing (DFM) and reliability impose further limits, but because these are application specific, they are not documented in this user guide.

The dimensions of the AP SoC package, in combination with PCB manufacturing limits, define most of the geometric aspects of the PCB structures described in this section, both directly and indirectly. This significantly constrains the PCB designer. The package ball pitch (1.0 mm for FF packages) defines the land pad layout. The minimum surface feature sizes of current PCB technology define the via arrangement in the area under the device. Minimum via diameters and keep-out areas around those vias are defined by the PCB manufacturer. These diameters limit the amount of space available in-between vias for routing of signals in and out of the via array underneath the device. These diameters define the maximum trace width in these breakout traces. PCB manufacturing limits constrain the minimum trace width and minimum spacing.

The total number of PCB layers necessary to accommodate an AP SoC is defined by the number of signal layers and the number of plane layers.

- The number of signal layers is defined by the number of I/O signal traces routed in and out of an AP SoC package (usually following the total User I/O count of the package).
- The number of plane layers is defined by the number of power and ground plane layers necessary to bring power to the AP SoC and to provide references and isolation for signal layers.

Most PCBs for large AP SoCs range from 12 to 22 layers.

System compliance often defines the total thickness of the board. Along with the number of board layers, this defines the maximum layer thickness, and therefore, the spacing in the Z direction of signal and plane layers to other signal and plane layers. Z-direction spacing of signal trace layers to other signal trace layers affects crosstalk. Z-direction spacing of signal trace layers to reference plane layers affects signal trace impedance. Z-direction spacing of plane layers to other plane layers affects power system parasitic inductance.
Z-direction spacing of signal trace layers to reference plane layers (defined by total board thickness and number of board layers) is a defining factor in trace impedance. Trace width (defined by AP SoC package ball pitch and PCB via manufacturing constraints) is another factor in trace impedance. A designer often has little control over trace impedance in area of the via array beneath the AP SoC. When traces escape the via array, their width can change to the width of the target impedance (usually 50Ω single-ended).

Decoupling capacitor placement and discrete termination resistor placement are other areas of trade-off optimization. DFM constraints often define a keep-out area around the perimeter of the AP SoC (device footprint) where no discrete components can be placed. The purpose of the keep-out area is to allow room for assembly and rework where necessary. For this reason, the area just outside the keep-out area is one where components compete for placement. It is up to the PCB designer to determine the high priority components. Decoupling capacitor placement constraints are described in Chapter 3, Power Distribution System. Termination resistor placement constraints must be determined through signal integrity simulation, using IBIS or SPICE models.

Transmission Lines

The combination of a signal trace and a reference plane forms a transmission line. All I/O signals in a PCB system travel through transmission lines. For single-ended I/O interfaces, both the signal trace and the reference plane are necessary to transmit a signal from one place to another on the PCB. For differential I/O interfaces, the transmission line is formed by the combination of two traces and a reference plane.

While the presence of a reference plane is not strictly necessary in the case of differential signals, it is necessary for practical implementation of differential traces in PCBs. Good signal integrity in a PCB system is dependent on having transmission lines with controlled impedance. Impedance is determined by the geometry of the traces and the signal trace and the reference plane.

The dielectric constant of the material in the vicinity of the trace and reference plane is a property of the PCB laminate materials, and in the case of surface traces, a property of the air or fluid surrounding the board. PCB laminate is typically a variant of FR4, though it can also be an exotic material.

While the dielectric constant of the laminate varies from board to board, it is fairly constant within one board. Therefore, the relative impedance of transmission lines in a PCB is defined most strongly by the trace geometries and tolerances. Impedance variance can occur based on the presence or absence of glass in a local portion of the laminate weave, but this rarely poses issues except in high-speed (>6 Gb/s) interfaces.
Return Currents

An often neglected aspect of transmission lines and their signal integrity is return current. It is incorrect to assume that a signal trace by itself forms a transmission line. Currents flowing in a signal trace have an equal and opposite complimentary current flowing in the reference plane beneath them. The relationship of the trace voltage and trace current to reference plane voltage and reference plane current defines the characteristic impedance of the transmission line formed by the trace and reference plane. While interruption of reference plane continuity beneath a trace is not as dramatic in effect as severing the signal trace, the performance of the transmission line and any devices sharing the reference plane is affected.

It is important to pay attention to reference plane continuity and return current paths. Interruptions of reference plane continuity, such as holes, slots, or isolation splits, cause significant impedance discontinuities in the signal traces. They can also be a significant source of crosstalk and contributor to Power Distribution System (PDS) noise. The importance of return current paths cannot be underestimated.
Chapter 3

Power Distribution System

Introduction

This chapter documents the power distribution system (PDS) for Zynq-7000 AP SoC devices, including decoupling capacitor selection, placement, and PCB geometries. A simple decoupling method is provided for each device. Basic PDS design principles are covered, as well as simulation and analysis methods. This chapter contains the following sections:

- PCB Decoupling Capacitors
- Basic PDS Principles
- Simulation Methods
- PDS Measurements
- Troubleshooting

PCB Decoupling Capacitors

Recommended PCB Capacitors per Device

A simple PCB-decoupling network for the Zynq-7000 AP SoC devices is listed in Table 3-1 and Table 3-2. The optimized quantities of PCB decoupling capacitors assumes that the voltage regulators have stable output voltages and meet the regulator manufacturer's minimum output capacitance requirement.

Decoupling methods other than those presented in these tables can be used, but the decoupling network should be designed to meet or exceed the performance of the simple decoupling networks presented here. The impedance of the alternate network must be less than or equal to that of the recommended network across frequencies from 100 KHz to 100 MHz.

Because device capacitance requirements vary with CLB and I/O utilization, PCB decoupling guidelines are provided on a per-device basis. V_{CCINT}, V_{CCUX}, V_{CCAX_IO}, V_{CCBRAM}, and PS supply capacitors are listed as the quantity per device, while V_{CCO} capacitors are listed as...
the quantity per I/O bank. Device performance at full utilization is equivalent across all devices when using these recommended networks.

Table 3-1 and Table 3-2 do not provide the decoupling networks required for the GTX and GTP transceiver power supplies. For this information, refer to UG476, 7 Series FPGAs GTX/GTH Transceivers User Guide and UG482, 7 Series FPGAs GTP Transceivers User Guide.

RECOMMENDED: Refer to XMP277, 7 Series Schematic Review Recommendations, for a comprehensive checklist for schematic review which complements this document.

Required PCB Capacitor Quantities

Table 3-1 lists the PCB decoupling capacitor guidelines per \(V_{CC} \) supply rail for Zynq-7000 AP SoC devices.

Table 3-1: Required PCB Capacitor Quantities per Device (PL)

<table>
<thead>
<tr>
<th>Package</th>
<th>Device</th>
<th>(V_{CCINT})</th>
<th>(V_{CCBRAM})</th>
<th>(V_{CCAUX})</th>
<th>(V_{CCAUX_IO})</th>
<th>(V_{CCO}) per Bank[3][4]</th>
<th>Bank 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>680 µF</td>
<td>330 µF</td>
<td>100 µF</td>
<td>4.7 µF</td>
<td>0.47 µF</td>
<td>47 µF</td>
</tr>
<tr>
<td>CLG225</td>
<td>Z-7010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>NA</td>
</tr>
<tr>
<td>CLG400</td>
<td>Z-7010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CLG485</td>
<td>Z-7015</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>CLG400</td>
<td>Z-7020</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>CLG484</td>
<td>Z-7020</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>SBG485</td>
<td>Z-7030</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FSB484/</td>
<td>Z-7030</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RB484</td>
<td>Z-7030</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FFG676</td>
<td>Z-7030</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FFG676/</td>
<td>Z-7030</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RF676</td>
<td>Z-7030</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FFG676</td>
<td>Z-7045</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FFG676/</td>
<td>Z-7045</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RF676</td>
<td>Z-7045</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FFG900/</td>
<td>Z-7045</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RF900</td>
<td>Z-7045</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FFG900</td>
<td>Z-7100</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>FFG1156</td>
<td>Z-7100</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes:
1. PCB Capacitor specifications are listed in Table 3-3.
2. Total includes all capacitors for all supplies, except for the MGT supplies MGTAVCC and MGTAVTT, which are covered in UG476, 7 Series FPGAs GTX/GTH Transceivers User Guide and UG482, 7 Series FPGAs GTP Transceivers User Guide.
3. HRIIO 47 µF capacitors can be consolidated at one 47 µF per four banks.
4. HPIIO 47 µF capacitors can be consolidated at one 47 µF per four banks.
5. Decoupling capacitors cover down to approximately 100 Hz.
Table 3-2 lists the decoupling requirements for the Processing System (PS).

Table 3-2: Required PCB Capacitor Quantities per Device (PS)

<table>
<thead>
<tr>
<th>Package</th>
<th>Device</th>
<th>(V_{\text{CCPINT}})</th>
<th>(V_{\text{CCPAUX}})</th>
<th>(V_{\text{CCO_DDR}})</th>
<th>(V_{\text{CCO_MIO0}})</th>
<th>(V_{\text{CCO_MIO1}})</th>
<th>(V_{\text{CCPLL}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100 µF</td>
<td>4.7 µF</td>
<td>0.47 µF</td>
<td>100 µF</td>
<td>4.7 µF</td>
<td>0.47 µF</td>
</tr>
<tr>
<td>CLG225</td>
<td>Z-7010</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CLG400</td>
<td>Z-7010</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CLG485</td>
<td>Z-7015</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CLG400</td>
<td>Z-7020</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CLG484</td>
<td>Z-7020</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SBG485</td>
<td>Z-7030</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FBG484/</td>
<td>Z-7030</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FBG676</td>
<td>Z-7030</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FFG676/</td>
<td>Z-7030</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FFG676</td>
<td>Z-7045</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FFG676/</td>
<td>Z-7045</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FFG900/</td>
<td>Z-7045</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FFG900</td>
<td>Z-7100</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FFG1156</td>
<td>Z-7100</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
1. See \(V_{\text{CCPAUX}} \) – PS Auxiliary Logic Supply, page 51 for layout guidelines.
2. \(V_{\text{CCPLL}} \) can be derived from \(V_{\text{CCPAUX}} \) using a ferrite bead filter (see Figure 5-2, page 52).
3. See \(V_{\text{CCPLL}} \) – PS PLL Supply, page 52 for layout guidelines.

Capacitor Specifications

The electrical characteristics of the capacitors in Table 3-1 and Table 3-2 are specified in Table 3-3, and are followed by guidelines on acceptable substitutions. The equivalent series resistance (ESR) ranges specified for these capacitors can be over-ridden. However, this requires analysis of the resulting power distribution system impedance to ensure that no resonant impedance spikes result.

Table 3-3: PCB Capacitor Specifications

<table>
<thead>
<tr>
<th>Ideal Value</th>
<th>Value Range(1)</th>
<th>Body Size(2)</th>
<th>Type</th>
<th>ESL Maximum</th>
<th>ESR Range(3)</th>
<th>Voltage Rating(4)</th>
<th>Suggested Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>680 µF</td>
<td>C > 680 µF</td>
<td>2917/D /7343</td>
<td>2-Terminal Tantalum</td>
<td>2.1 nH</td>
<td>5 mΩ < ESR < 40 mΩ</td>
<td>2.5V</td>
<td>T530X687M006ATE018</td>
</tr>
<tr>
<td>330 µF</td>
<td>C > 330 µF</td>
<td>2917/D /7343</td>
<td>2-Terminal Tantalum</td>
<td>2.0 nH</td>
<td>5 mΩ < ESR < 40 mΩ</td>
<td>2.5V</td>
<td>T525D337M006ATE025</td>
</tr>
</tbody>
</table>
Chapter 3: Power Distribution System

Table 3-3: PCB Capacitor Specifications (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>330 µF</td>
<td>C > 330 µF</td>
<td>2917/D /7343</td>
<td>2-Terminal Niobium Oxide</td>
<td>2.0 nH</td>
<td>5 mΩ < ESR < 40 mΩ</td>
<td>2.5V</td>
<td>NOSD337M002#0035</td>
</tr>
<tr>
<td>100 µF</td>
<td>C > 100 µF</td>
<td>1210</td>
<td>2-Terminal Tantalum, Ceramic X7R, X7U, or X5R</td>
<td>1 nH</td>
<td>1 mΩ < ESR < 40 mΩ</td>
<td>2.5V</td>
<td>GRM32EE70G107ME19</td>
</tr>
<tr>
<td>47 µF</td>
<td>C > 47 µF</td>
<td>1210</td>
<td>2-Terminal Ceramic X7R or X5R</td>
<td>1 nH</td>
<td>1 mΩ < ESR < 40 mΩ</td>
<td>6.3V</td>
<td>GRM32ER70J476ME20L</td>
</tr>
<tr>
<td>4.7 µF</td>
<td>C > 4.7 µF</td>
<td>0805</td>
<td>2-Terminal Ceramic X7R or X5R</td>
<td>0.5 nH</td>
<td>1 mΩ < ESR < 20 mΩ</td>
<td>6.3V</td>
<td>GRM21BR71A475KA73</td>
</tr>
<tr>
<td>0.47 µF</td>
<td>C > 0.47 µF</td>
<td>0603</td>
<td>2-Terminal Ceramic X7R or X5R</td>
<td>0.5 nH</td>
<td>1 mΩ < ESR < 20 mΩ</td>
<td>6.3V</td>
<td>GRM188R70J474KA01</td>
</tr>
</tbody>
</table>

Notes:
1. Values can be larger than specified.
2. Body size can be smaller than specified.
3. ESR must be within the specified range.
4. Voltage rating can be higher than specified.

PCB Bulk Capacitors

The purpose of the bulk capacitors is to cover the low-frequency range between where the voltage regulator stops working and where the on-package ceramic capacitors start working. As specified in Table 3-1 and Table 3-2, all AP SoC supplies require bulk capacitors.

The tantalum and niobium oxide capacitors specified in Table 3-3 were selected for their values and controlled ESR values. They are also ROHS compliant. If another manufacturer’s tantalum, niobium oxide, or ceramic capacitors are used, ensure they meet the specifications of Table 3-3 and are properly evaluated via simulation, s-parameter extraction, or bench testing.

PCB High-Frequency Capacitors

Table 3-3 shows the requirements for the 0.47 µF and 4.7 µF capacitors in the 0402 package. Substitutions can be made for some characteristics, but not others. For details, refer to the notes in Table 3-3.
Chapter 3: Power Distribution System

PCB Capacitor Placement and Mounting Techniques

PCB Bulk Capacitors

Bulk capacitors can be large and sometimes are difficult to place very close to the AP SoC. Fortunately, this is not a problem because the low-frequency energy covered by bulk capacitors is not sensitive to capacitor location. Bulk capacitors can be placed almost anywhere on the PCB, but the best placement is as close as possible to the AP SoC. Capacitor mounting should follow normal PCB layout practices, tending toward short and wide shapes connecting to power planes with multiple vias.

Mid and High Frequency Capacitors

The 4.7 µF capacitor covers the middle frequency range, while the 0.47 µF capacitor covers the high frequency range. Placement has some impact on performance. The 4.7 µF capacitors should be placed as close as possible to the AP SoC. Any placement within two inches of the device’s outer edge is acceptable. The 0.47 µF capacitors should be placed as close to the AP SoC as possible, within 0.5 inches of the outer edge.

The capacitor mounting (solder lands, traces, and vias) should be optimized for low inductance. Vias should be butted directly against the pads. Vias can be located at the ends of the pads (see Figure 3-1B), but are more optimally located at the sides of the pads (see Figure 3-1C). Via placement at the sides of the pads decreases the mounting’s overall parasitic inductance by increasing the mutual inductive coupling of one via to the other. Dual vias can be placed on both sides of the pads (see Figure 3-1D) for even lower parasitic inductance, but with diminishing returns.
Chapter 3: Power Distribution System

Basic PDS Principles

The purpose of the PDS and the properties of its components are discussed in this section. The important aspects of capacitor placement, capacitor mounting, PCB geometry, and PCB stackup recommendations are also described.

Noise Limits

In the same way that devices in a system have a requirement for the amount of current consumed by the power system, there is also a requirement for the cleanliness of the power. This cleanliness requirement specifies a maximum amount of noise present on the power supply, often referred to as ripple voltage (V_{RIPPLE}). Most digital devices, including all Zynq-7000 AP SoC devices, require that V_{CC} supplies not fluctuate more than the specifications documented in the device data sheet.

The power consumed by a digital device varies over time and this variance occurs on all frequency scales, creating a need for a wide-band PDS to maintain voltage stability.

- Low-frequency variance of power consumption is usually the result of devices or large portions of devices being enabled or disabled. This variance occurs in time frames from milliseconds to days.
Chapter 3: Power Distribution System

- High-frequency variance of power consumption is the result of individual switching events inside a device. This occurs on the scale of the clock frequency and the first few harmonics of the clock frequency up to about 5 GHz.

Because the voltage level of V_{CC} for a device is fixed, changing power demands are manifested as changing current demand. The PDS must accommodate these variances of current draw with as little change as possible in the power-supply voltage.

When the current draw in a device changes, the PDS cannot respond to that change instantaneously. As a consequence, the voltage at the device changes for a brief period before the PDS responds. Two main causes for this PDS lag correspond to the two major PDS components: the voltage regulator and decoupling capacitors.

The first major component of the PDS is the voltage regulator. The voltage regulator observes its output voltage and adjusts the amount of current it is supplying to keep the output voltage constant. Most common voltage regulators make this adjustment in milliseconds to microseconds. Voltage regulators effectively maintain the output voltage for events at all frequencies from DC to a few hundred kHz, depending on the regulator (some are effective at regulating in the low MHz). For transient events that occur at frequencies above this range, there is a time lag before the voltage regulator responds to the new current demand level.

For example, if the device’s current demand increases in a few hundred picoseconds, the voltage at the device sags by some amount until the voltage regulator can adjust to the new, higher level of required current. This lag can last from microseconds to milliseconds. A second component is needed to substitute for the regulator during this time, preventing the voltage from sagging.

This second major PDS component is the decoupling capacitor (also known as a bypass capacitor). The decoupling capacitor works as the device’s local energy storage. The capacitor cannot provide DC power because it stores only a small amount of energy (voltage regulator provides DC power). This local energy storage should respond very quickly to changing current demands. The capacitors effectively maintain power-supply voltage at frequencies from hundreds of kHz to hundreds of MHz (in the milliseconds to nanoseconds range). Discrete decoupling capacitors are not useful for events occurring above or below this range.

For example, if current demand in the device increases in a few picoseconds, the voltage at the device sags by some amount until the capacitors can supply extra charge to the device. If current demand in the device maintains this new level for many milliseconds, the voltage-regulator circuit, operating in parallel with the decoupling capacitors, replaces the capacitors by changing its output to supply this new level of current.

Figure 3-2 shows the major PDS components: the voltage regulator, the decoupling capacitors, and the active device being powered (AP SoC).
Chapter 3: Power Distribution System

Figure 3-2: Simplified PDS Circuit

Figure 3-3 shows a simplified PDS circuit with all reactive components represented by a frequency-dependent resistor.

Figure 3-3: Further Simplified PDS Circuit

Role of Inductance

Inductance is the property of the capacitors and the PCB current paths that slows down changes in current flow. Inductance is the reason why capacitors cannot respond instantaneously to transient currents or to changes that occur at frequencies higher than their effective range.

Inductance can be thought of as the momentum of charge. Charge moving through a conductor represents some amount of current. If the level of current changes, the charge moves at a different rate. Because momentum (stored magnetic-field energy) is associated with this charge, some amount of time and energy is required to slow down or speed up the charge flow. The greater the inductance, the greater the resistance to change, and the longer the time required for the current level to change. A voltage develops across the inductance as this change occurs.

The PDS, made up of a regulator and multiple stages of decoupling capacitors, accommodates the device current demand and responds to current transients as quickly as necessary to maintain the voltage within the specified limits. When these current demands
are not met, the voltage across the device's power supply changes. This is observed as noise. Inductance in the current path of the capacitors should be minimized, because it retards the ability of decoupling capacitors to quickly respond to changing current demands.

Inductances occur between the AP SoC device and capacitors and between the capacitors and the voltage regulator (see Figure 3-2). These inductances occur as parasitics in the capacitors and in all PCB current paths. It is important that each of these parasitics be minimized.

Capacitor Parasitic Inductance

The capacitance value is often considered to be a capacitor's most important characteristic. In power system applications, the parasitic inductance (ESL) has the same or greater importance. Capacitor package dimensions (body size) determine the amount of parasitic inductance. Physically small capacitors usually have lower parasitic inductance than physically large capacitors.

Requirements for choosing decoupling capacitors:

- For a specific capacitance value, choose the smallest package available.
- For a specific package size (essentially a fixed inductance value), choose the highest capacitance value available in that package.

Surface-mount chip capacitors are the smallest capacitors available and are a good choice for discrete decoupling capacitors:

- For values from 100 µF to very small values such as 0.01 µF, ceramic X7R or X5R type capacitors are usually used. These capacitors have a low parasitic inductance and a low ESR, with an acceptable temperature characteristic.
- For larger values, such as 47 µF to 1000 µF, tantalum capacitors are usually used. These capacitors have a low parasitic inductance and a medium ESR, giving them a low Q factor and consequently a very wide range of effective frequencies.

If tantalum capacitors are not available or cannot be used, low-ESR, low-inductance electrolytic capacitors can be used, provided they have comparable ESR and ESL values. Other new technologies with similar characteristics are also available (Os-Con, POSCAP, and Polymer-Electrolytic SMT).

A real capacitor of any type then not only has capacitance characteristics but also inductance and resistance characteristics. Figure 3-4 shows the parasitic model of a real capacitor. A real capacitor should be treated as an RLC circuit (a circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series).
Chapter 3: Power Distribution System

Figure 3-4: Parasitics of a Real, Non-Ideal Capacitor

Figure 3-5 shows a real capacitor’s impedance characteristic. Overlaid on this plot are curves corresponding to the capacitor’s capacitance and parasitic inductance (ESL). These two curves combine to form the RLC circuit’s total impedance characteristic, softened or sharpened by the capacitor’s ESR.

As capacitive value is increased, the capacitive curve moves down and left. As parasitic inductance is decreased, the inductive curve moves down and right. Because parasitic inductance for capacitors in a specific package is fixed, the inductance curve for capacitors in a specific package remains fixed.

As different capacitor values are selected in the same package, the capacitive curve moves up and down against the fixed inductance curve, as shown in Figure 3-6.
The low-frequency capacitor impedance can be reduced by increasing the value of the capacitor; the high-frequency impedance can be reduced by decreasing the inductance of the capacitor. While it might be possible to specify a higher capacitance value in the fixed package, it is not possible to lower the inductance of the capacitor (in the fixed package) without putting more capacitors in parallel. Using multiple capacitors in parallel divides the parasitic inductance, and at the same time, multiplies the capacitance value. This lowers both the high and low frequency impedance at the same time.

PCB Current Path Inductance

The parasitic inductance of current paths in the PCB have three distinct sources:

- Capacitor mounting
- PCB power and ground planes
- AP SoC mounting

Capacitor Mounting Inductance

Capacitor mounting refers to the capacitor’s solder lands on the PCB, the trace (if any) between the land and via, and the via.

The vias, traces, and capacitor mounting pads of a 2-terminal capacitor contribute inductance between 300 pH to 4 nH depending on the specific geometry.

Because the current path’s inductance is proportional to the loop area the current traverses, it is important to minimize this loop size. The loop consists of the path through one power plane, up through one via, through the connecting trace to the land, through the capacitor, through the other land and connecting trace, down through the other via, and into the
other plane, as shown in Figure 3-7.

A connecting trace length has a large impact on the mounting’s parasitic inductance and if used, should be as short and wide as possible. When possible, a connecting trace should not be used and the via should butt up against the land. Placing vias to the side of the capacitor lands or doubling the number of vias, further reduces the mounting’s parasitic inductance.

Some PCB manufacturing processes allow via-in-pad geometries, an option for reducing parasitic inductance. Using multiple vias per land is important with ultra-low inductance capacitors, such as reverse aspect ratio capacitors that place wide terminals on the sides of the capacitor body instead of the ends.

PCB layout engineers often try to squeeze more parts into a small area by sharing vias among multiple capacitors. This technique should not be used under any circumstances. PDS improvement is very small when a second capacitor is connected to an existing capacitor’s vias. For a larger improvement, reduce the total number of capacitors and maintain a one-to-one ratio of lands to vias.

The capacitor mounting (lands, traces, and vias) typically contributes about the same amount or more inductance than the capacitor’s own parasitic self-inductance.
Chapter 3: Power Distribution System

Plane Inductance

Some inductance is associated with the PCB power and ground planes. The geometry of these planes determines their inductance.

Current spreads out as it flows from one point to another (due to a property similar to skin effect) in the power and ground planes. Inductance in planes can be described as spreading inductance and is specified in units of henries per square. The square is dimensionless; the shape of a section of a plane, not the size, determines the amount of inductance.

Spreading inductance acts like any other inductance and resists changes to the amount of current in a power plane (the conductor). The inductance retards the capacitor’s ability to respond to a device’s transient currents and should be reduced as much as possible. Because the designer’s control over the X-Y shape of the plane can be limited, the only controllable factor is the spreading inductance value. This is determined by the thickness of the dielectric separating a power plane from its associated ground plane.

For high-frequency power distribution systems, power and ground planes work in pairs, with their inductances coexisting dependently with each other. The spacing between the power and ground planes determines the pair’s spreading inductance. The closer the spacing (the thinner the dielectric), the lower the spreading inductance. Approximate values of spreading inductance for different thicknesses of FR4 dielectric are shown in Table 3-4.

Table 3-4: Capacitance and Spreading Inductance Values for Different Thicknesses of FR4 Power-Ground Plane Sandwiches

<table>
<thead>
<tr>
<th>Dielectric Thickness (micron)</th>
<th>Inductance (pH/square)</th>
<th>Capacitance (pF/in2)</th>
<th>Capacitance (pF/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>130</td>
<td>225</td>
<td>35</td>
</tr>
<tr>
<td>51</td>
<td>65</td>
<td>450</td>
<td>70</td>
</tr>
<tr>
<td>25</td>
<td>32</td>
<td>900</td>
<td>140</td>
</tr>
</tbody>
</table>

Decreased spreading inductance corresponds to closer spacing of VCC and GND planes. When possible, place the VCC planes directly adjacent to the GND planes in the PCB stackup. Facing VCC and GND planes are sometimes referred to as sandwiches. While the use of VCC – GND sandwiches was not necessary in the past for previous technologies (lead frames, wire bond packages), the speeds involved and the sheer amount of power required for fast, dense devices often demand it.

However, because of the presence of substrate decoupling capacitors in Zynq-7000 AP SoC devices, there is a limit to the amount of fast transient current demanded from PCB decoupling capacitors. This means that there is little benefit from dielectric thicknesses below 50µ (2 mil). Dielectric thickness of 50µ or 75µ between VCC and GND layers is sufficient for Zynq-7000 AP SoC devices.

Besides offering a low-inductance current path, power-ground sandwiches also offer some high-frequency decoupling capacitance. As the plane area increases and as the separation...
between power and ground planes decreases, the value of this capacitance increases. Capacitance per square inch is shown in Table 3-4. However, the amount of capacitance arising from these PCB power-ground plane pairs is generally inconsequential, given the substrate decoupling capacitors present in Zynq-7000 AP SoC devices.

AP SoC Mounting Inductance

The PCB solder lands and vias that connect the AP SoC power pins (V\textsubscript{CC} and GND) contribute an amount of parasitic inductance to the overall power circuit. For existing PCB technology, the solder land geometry and the dogbone geometry are mostly fixed, and parasitic inductance of these geometries does not vary. Via parasitic inductance is a function of the via length and the proximity of the opposing current paths to one another.

The relevant via length is the portion of the via that carries transient current between the AP SoC solder land and the associated V\textsubscript{CC} or GND plane. Any remaining via (between the power plane and the PCB backside) does not affect the parasitic inductance of the via (the shorter the via between the solder lands and the power plane, the smaller the parasitic inductance). Parasitic via inductance in the AP SoC mounting is reduced by keeping the relevant V\textsubscript{CC} and GND planes as close to the AP SoC as possible (close to the top of the PCB stackup).

Device pinout arrangement determines the proximity of opposing current paths to one another. Inductance is associated with any two opposing currents (for example, current flowing in a V\textsubscript{CC} and GND via pair). A high degree of mutual inductive coupling between the two opposing paths reduces the loop's total inductance. Therefore, when given a choice, V\textsubscript{CC} and GND vias should be as close together as possible.

The via field under an AP SoC has many V\textsubscript{CC} and GND vias, and the total inductance is a function of the proximity of one via to another:

- For core V\textsubscript{CC} supplies (V\textsubscript{CC\textsubscript{INT}} and V\textsubscript{CC\textsubscript{AUX}}), opposing current is between the V\textsubscript{CC} and GND pins.
- For I/O V\textsubscript{CC} supplies (V\textsubscript{CC\textsubscript{O}}), opposing current is between any I/O and its return current path, whether carried by a V\textsubscript{CC\textsubscript{O}} or GND pin.

To reduce parasitic inductance:

- Core V\textsubscript{CC} pins such as V\textsubscript{CC\textsubscript{INT}} and V\textsubscript{CC\textsubscript{AUX}} are placed in a checkerboard arrangement in the pinout.
- V\textsubscript{CC\textsubscript{O}} and GND pins are distributed among the I/O pins.

Every I/O pin in the Zynq-7000 AP SoC device pinout is adjacent to a return-current pin.

AP SoC pinout arrangement determines the PCB via arrangement. The PCB designer cannot control the proximity of opposing current paths but has control over the trade-offs between the capacitor’s mounting inductance and AP SoC’s mounting inductance:
Chapter 3: Power Distribution System

- Both mounting inductances are reduced by placing power planes close to the PCB stackup’s top half and placing the capacitors on the top surface (reducing the capacitor’s via length).
- If power planes are placed in the PCB stackup’s bottom half, the capacitors must be mounted on the PCB backside. In this case, AP SoC mounting vias are already long, and making the capacitor vias long (by coming down from the top surface) is a bad practice. A better practice is to take advantage of the short distance between the underside of the PCB and the power plane of interest, mounting capacitors on the underside.

PCB Stackup and Layer Order

VCC and ground plane placement in the PCB stackup (the layer order) has a significant impact on the parasitic inductances of power current paths. Layer order must be considered early in the design process:
- High-priority supplies should be placed closer to the AP SoC (in the PCB stackup's top half)
- Low-priority supplies should be placed farther from the AP SoC (in the PCB stackup's bottom half)

Power supplies with high transient current should have the associated VCC planes close to the top surface (AP SoC side) of the PCB stackup. This decreases the vertical distance (VCC and GND via length) that currents travel before reaching the associated VCC and GND planes. To reduce spreading inductance, every VCC plane should have an adjacent GND plane in the PCB stackup. The skin effect causes high-frequency currents to couple tightly, and the GND plane adjacent to a specific VCC plane tends to carry the majority of the current complementary to that in the VCC plane. Thus, adjacent VCC and GND planes are treated as a pair.

Not all VCC and GND plane pairs reside in the PCB stackup's top half because manufacturing constraints typically require a symmetrical PCB stackup around the center (with respect to dielectric thicknesses and etched copper areas). The PCB designer chooses the priority of the VCC and GND plane pairs: high priority pairs carry high transient currents and are placed high in the stackup, while low priority pairs carry lower transient currents (or can tolerate more noise) and are placed in the lower part of the stackup.

Capacitor Effective Frequency

Every capacitor has a narrow frequency band where it is most effective as a decoupling capacitor. This band is centered at the capacitor’s self-resonant frequency FRSELF. The effective frequency bands of some capacitors are wider than others. A capacitor’s ESR determines the capacitor’s quality (Q) factor, and the Q factor can determine the width of the effective frequency band:
- Tantalum capacitors generally have a very wide effective band.
• Ceramic chip capacitors with a lower ESR, generally have a very narrow effective frequency band.

An ideal capacitor only has a capacitive characteristic, whereas real non-ideal capacitors also have a parasitic inductance (ESL) and a parasitic resistance (ESR). These parasitics work in series to form an RLC circuit (Figure 3-4). The RLC circuit's resonant frequency is the capacitor's self-resonant frequency.

To determine the RLC circuit's resonant frequency, use Equation 3-1:

\[F = \frac{1}{2\pi\sqrt{LC}} \]

Equation 3-1

Another method of determining the self-resonant frequency is to find the minimum point in the impedance curve of the equivalent RLC circuit. The impedance curve can be computed or generated in SPICE using a frequency sweep. See the Simulation Methods section for other ways to compute an impedance curve.

It is important to distinguish between the capacitor's self-resonant frequency and the mounted capacitor's effective resonant frequency when the capacitor is part of the system, \(F_{RIS} \). This corresponds to the resonant frequency of the capacitor with its parasitic inductance, plus the inductance of the vias, planes, and connecting traces between the capacitor and the AP SoC.

The capacitor's self-resonant frequency, \(F_{RSELF} \), (capacitor data sheet value) is much higher than its effective mounted resonant frequency in the system, \(F_{RIS} \). Because the mounted capacitor's performance is most important, the mounted resonant frequency is used when evaluating a capacitor as part of the greater PDS.

Mounted parasitic inductance is a combination of the capacitor's own parasitic inductance and the inductance of: PCB lands, connecting traces, vias, and power planes. Vias traverse a full PCB stackup to the device when capacitors are mounted on the PCB backside. For a board with a finished thickness of 1.524 mm (60 mils), these vias contribute approximately 300 p\(\text{H} \) to 1,500 p\(\text{H} \), (the capacitor's mounting parasitic inductance, \(L_{MOUNT} \)) depending on the spacing between vias. Wider-spaced vias and vias in thicker boards have higher inductance.

To determine the capacitor’s total parasitic inductance in the system, \(L_{IS} \), the capacitor’s parasitic inductance, \(L_{SELF} \), is added to the mounting’s parasitic inductance, \(L_{MOUNT} \):

\[L_{IS} = L_{SELF} + L_{MOUNT} \]

Equation 3-2

For example, using X7R Ceramic Chip capacitor in 0402 body size:

- \(C = 0.01 \mu\text{F} \) (selected by user)
- \(L_{SELF} = 0.9 \text{ nH} \) (capacitor data sheet parameter)
- \(F_{RSELF} = 53 \text{ MHz} \) (capacitor data sheet parameter)
Chapter 3: Power Distribution System

\[L_{\text{MOUNT}} = 0.8 \text{ nH (based on PCB mounting geometry)} \]

To determine the effective in-system parasitic inductance \(L_{\text{IS}} \), add the via parasitics:

\[L_{\text{IS}} = L_{\text{SELF}} + L_{\text{MOUNT}} = 0.9 \text{ nH} + 0.8 \text{ nH} \]

\[L_{\text{IS}} = 1.7 \text{ nH} \quad \text{Equation 3-3} \]

The values from the example are used to determine the mounted capacitor resonant frequency \(F_{\text{RIS}} \). Using Equation 3-1:

\[
F_{\text{RIS}} = \frac{1}{2\pi \sqrt{L_{\text{ISC}} C}}
\]

\[
F_{\text{RIS}} = \frac{1}{2\pi \sqrt{(1.7 \times 10^{-9} \text{ H}) \cdot (0.01 \times 10^{-6} \text{ F})}} = 38 \times 10^6 \text{ Hz} \quad \text{Equation 3-5}
\]

\(F_{\text{RSELF}} \) is 53 MHz, but \(F_{\text{RIS}} \) is lower at 38 MHz. The addition of mounting inductances shifts the effective-frequency band down.

A decoupling capacitor is most effective at the narrow-frequency band around its resonant frequency, and thus, the resonant frequency must be reviewed when choosing a capacitor collection to build up a decoupling network. This being said, capacitors can be effective at frequencies considerably higher and lower than their resonant frequency. Recall that capacitors of differing values in the same package share the same inductance curve. As shown in Figure 3-6, for any given frequency along the inductive portion of the curve, the capacitors are equally effective.

Capacitor Anti-Resonance

One problem associated with combinations of capacitors in a PDS of an AP SoC is anti-resonant spikes in the PDS aggregate impedance. The cause for these spikes is a bad combination of energy storage elements in the PDS (intrinsic capacitances, discrete capacitors, parasitic inductances, and power and ground planes).

Anti-resonance can arise between any two consecutive stages of a power distribution system, such as between the high-frequency PCB capacitors and the PCB plane capacitance. The inter-plane capacitance of the power and ground planes generally has a high-Q factor. If the high-frequency PCB capacitors also are high-Q, the crossover point between the high-frequency discrete capacitors and the plane capacitance might exhibit a high-impedance anti-resonance peak. If the AP SoC has a high transient current demand at this frequency (as a stimulus), a large noise voltage can occur.

To correct this type of problem, the characteristics of the high-frequency discrete capacitors or the characteristics of the \(V_{\text{CC}} \) and ground planes must be changed, or AP SoC activity shifted to a different frequency away from the resonance.
Capacitor Placement Background

To perform the decoupling function, capacitors should be close to the device being decoupled.

Increased spacing between the AP SoC and decoupling capacitor increases the current flow distance in the power and ground planes, and it often increases the current path’s inductance between the device and the capacitor.

The inductance of this current path (the loop followed by current as it travels from the VCC side of the capacitor to the VCC pin[s] of the AP SoC, and from the GND pin[s] of the AP SoC to the GND side of the capacitor[s]), is proportional to the loop area. Inductance is decreased by decreasing the loop area.

Shortening the distance between the device and the decoupling capacitor reduces the inductance, resulting in a less impeded transient current flow. Because of typical PCB dimensions, this lateral plane travel tends to be less important than the phase relationship between the AP SoC noise source and the mounted capacitor.

The phase relationship between the AP SoC’s noise source and the mounted capacitor determines the capacitor’s effectiveness. For a capacitor to be effective in providing transient current at a certain frequency (for example, the capacitor’s resonant frequency), the phase relationship, based on the distance travelled by the current from the AP SoC to the capacitor, must be within a fraction of the corresponding period.

The capacitor’s placement determines the length of the transmission line interconnect (in this case, the power and ground plane pair) between the capacitor and AP SoC. The propagation delay of this interconnect is the key factor.

AP SoC noise falls into certain frequency bands, and different sizes of decoupling capacitors take care of different frequency bands. Thus, capacitor placement requirements are determined by each capacitor’s effective frequency.

When the AP SoC initiates a current demand change, it causes a small local disturbance in the PDS voltage (a point in the power and ground planes). Before it can counteract this, the decoupling capacitor must first sense a voltage difference.

A finite time delay (Equation 3-6) occurs between the start of the disturbance at the AP SoC power pins and the point when the capacitor senses the disturbance.

$$\text{Time Delay} = \frac{\text{Distance from the AP SoC power pins to the capacitor}}{\text{Signal propagation speed through FR4 dielectric}}$$ \hfill \text{Equation 3-6}

The dielectric is the substrate of the PCB where the power planes are embedded.
Another delay of the same duration occurs when the compensation current from the capacitor flows to the AP SoC. For any transient current demand in the AP SoC, a round-trip delay occurs before any relief is seen at the AP SoC.

- Negligible energy is transferred to the AP SoC with placement distances greater than one quarter of a demand frequency's wavelength.
- Energy transferred to the AP SoC increases from 0% at one-quarter of a wavelength to 100% at zero distance.
- Energy is transferred efficiently from the capacitor to the AP SoC when capacitor placement is at a fraction of a quarter wavelength of the AP SoC power pins. This fraction should be small because the capacitor is also effective at some frequencies (shorter wavelengths) above its resonant frequency.

One-tenth of a quarter wavelength is a good target for most practical applications and leads to placing a capacitor within one-fortieth of a wavelength of the power pins it is decoupling. The wavelength corresponds to the capacitor’s mounted resonant frequency, F_{RIS}.

When using large numbers of external termination resistors or passive power filtering for transceivers, priority should be given to these over the decoupling capacitors. Moving away from the device in concentric rings, the termination resistors and transceiver supply filtering should be closest to the device, followed by the smallest-value decoupling capacitors, then the larger-value decoupling capacitors.

V_{REF} Stabilization Capacitors

In V_{REF} supply stabilization, one capacitor per pin is placed as close as possible to the V_{REF} pin. The capacitors used are in the 0.01 µF – 0.47 µF range. The V_{REF} capacitor’s primary function is to reduce the V_{REF} node impedance, which in turn reduces crosstalk coupling. Since no low-frequency energy is needed, larger capacitors are not necessary.

This only applies when Internal V_{REF} is not used. Internal VREF is a feature in the Zynq-7000 AP SoC device wherein the reference voltage rail is generated internally, which in turn allows the V_{REF} pins to be used as regular I/O pins. See UG471, 7 Series FPGAs SelectIO User Guide for more details on Internal V_{REF}.

Power Supply Consolidation

Powering 1.8V V_{CCO} and V_{CCAUX} from a common PCB plane is allowed in Zynq-7000 AP SoC designs. However, careful consideration must be given to power supply noise—in particular, any noise on the V_{CCO} rail should not violate the recommended operating condition range for the V_{CCAUX} supply. See DS187, Zynq-7000 All Programmable SoC (Z-7010, Z-7015, and Z-7020): DC and AC Switching Characteristics and DS191, Zynq-7000 All Programmable SoC (Z-7030, Z-7045, and Z-7100): DC and AC Switching Characteristics.
Unconnected V_{CCO} Pins

In some cases, one or more I/O banks in an AP SoC are not used (for example, when an AP SoC has far more I/O pins than the design requires). In these cases, it might be desirable to leave the bank’s associated V_{CCO} pins unconnected, as it can free up some PCB layout constraints (less voiding of power and ground planes from via antipads, less obstacles to signals entering and exiting the pinout array, more copper area available for other planelets in the otherwise used plane layer).

Leaving the V_{CCO} pins of unused I/O banks floating reduces the level of ESD protection on these pins and the I/O pins in the bank. For maximum ESD protection in an unused bank, all V_{CCO} and I/O pins in that bank should be connected together to the same potential, whether that be ground, a valid V_{CCO} voltage, or a floating plane.

Simulation Methods

Simulation methods, ranging from very simple to very complex, exist to predict the PDS characteristics. An accurate simulation result is difficult to achieve without using a fairly sophisticated simulator and taking a significant amount of time.

Basic lumped RLC simulation is one of the simplest simulation methods. Though it does not account for the distributed behavior of a PDS, it is a useful tool for selecting and verifying that combinations of decoupling capacitor values will not lead to large anti-resonances. Lumped RLC simulation is a good method for establishing equivalence of decoupling networks, such as evaluating an alternative to the capacitors of Table 3-3.

Lumped RLC simulation is performed either in a version of SPICE or other circuit simulator, or by using a mathematical tool like MathCAD or Microsoft Excel. Istvan Novak publishes a free Excel spreadsheet for lumped RLC simulation (among other useful tools for PDS simulation) on his website under Tool Download:

http://www.electrical-integrity.com

Table 3-5 also lists a few EDA tool vendors for PDS design and simulation. These tools span a wide range of sophistication levels.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Vendor</th>
<th>Website URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>Agilent</td>
<td>http://www.agilent.com</td>
</tr>
<tr>
<td>Siwave, HFSS</td>
<td>Ansoft</td>
<td>http://www.ansoft.com</td>
</tr>
<tr>
<td>Specctraquest Power Integrity</td>
<td>Cadence</td>
<td>http://www.cadence.com</td>
</tr>
<tr>
<td>Hyperlynx PI</td>
<td>Mentor</td>
<td>http://www.mentor.com</td>
</tr>
</tbody>
</table>
Chapter 3: Power Distribution System

PDS Measurements

Measurements can be used to determine whether a PDS is adequate. PDS noise measurements are a unique task, and many specialized techniques have been developed. This section describes the noise magnitude and noise spectrum measurements.

Noise Magnitude Measurement

Noise measurement must be performed with a high-bandwidth oscilloscope (minimum 3 GHz oscilloscope and 1.5 GHz probe or direct coaxial connection) on a design running realistic test patterns. The measurement is taken at the device's power pins or at an unused I/O driven High or Low (referred to as a spyhole measurement).

\(V_{CCINT} \) and \(V_{CCAUX} \) can only be measured at the PCB backside vias. \(V_{CCO} \) can also be measured this way, but more accurate results are obtained by measuring static (fixed logic level) signals at unused I/Os in the bank of interest.

When making the noise measurement on the PCB backside, the via parasitics in the path between the measuring point and AP SoC must be considered. Any voltage drop occurring in this path is not accounted for in the oscilloscope measurement.

PCB backside via measurements also have a potential problem: decoupling capacitors are often mounted directly underneath the device, meaning the capacitor lands connect directly to the \(V_{CC} \) and GND vias with surface traces. These capacitors confuse the measurement by acting like a short circuit for the high-frequency AC current. To make sure the measurements are not shorted by the capacitors, remove the capacitor at the measurement site (keep all others to reflect the real system behavior).

When measuring \(V_{CCO} \) noise, the measurement can be taken at an I/O pin configured as a driver to logic 1 or logic 0. In most cases, the same I/O standard should be used for this "spyhole" as for the other signals in the bank. Measuring a static logic 0 shows the crosstalk (via field, PCB routing, package routing) induced on the victim. Measuring a static logic 1 shows all the same crosstalk components as well as the noise present on the \(V_{CCO} \) net for the I/O bank. By subtracting (coherently in time) the noise measured on static logic 0 from the noise measured on static logic 1, the noise on \(V_{CCO} \) at the die can be viewed. For an accurate result, the static logic 0 and static logic 1 noise must be measured at the same I/O location. This means storing the time-domain waveform information from both logic states and performing the subtraction operation on the two waveforms in a post-process math computation tool such as MATLAB or Excel.

Oscilloscope Measurement Methods

There are two basic ways of using the oscilloscope to view power system noise, each for a different purpose. The first surveys all possible noise events, while the second is useful for focusing on individual noise sources.
• Place the oscilloscope in infinite persistence mode to acquire all noise over a long time period (many seconds or minutes). If the design operates in many different modes, using different resources in different amounts, these various conditions and modes should be in operation while the oscilloscope is acquiring the noise measurement.

• Place the oscilloscope in averaging mode and trigger on a known aggressor event. This can show the amount of noise correlated with the aggressor event (any events asynchronous to the aggressor are removed through averaging).

Power system noise measurements should be made at a few different AP SoC locations to ensure that any local noise phenomena are captured.

Figure 3-8 shows an averaged noise measurement taken at the V_{CCO} pins of a sample design. In this case, the trigger was the clock for an I/O bus interface sending a 1-0-1-0 pattern at 250 Mb/s.

Figure 3-9 shows an infinite persistence noise measurement of the same design with a wider variety of I/O activity. Because the infinite persistence measurement catches all noise events over a long period, both correlated and non-correlated with the primary aggressor, all power system excursions are shown.
Chapter 3: Power Distribution System

3.0.1 Noise Spectrum Measurements

Having the necessary information to improve the decoupling network requires additional measurements. To determine the frequencies where the noise resides, noise power spectrum measurement is necessary. A spectrum analyzer or a high-bandwidth oscilloscope coupled with FFT math functionality can accomplish this.

The FFT math function can be built into the oscilloscope, however, many of these functions do not have resolution sufficient to give a clear picture of the noise spectrum. Alternatively, a long sequence of time-domain data can be captured from an oscilloscope and converted to frequency domain using MATLAB or other post-processing software supporting FFT. This method has the advantage of showing as much resolution as the user is willing to process. If neither math capacity is available, the noise frequency content can be approximated by visually examining the time-domain waveform and estimating the individual periodicities present in the noise.

A spectrum analyzer is a frequency-domain instrument, showing the frequency content of a voltage signal at its inputs. Using a spectrum analyzer, the user sees the exact frequencies where the PDS is inadequate.

Figure 3-9: Infinite Persistence Measurement of Same Supply

The measurement shown in Figure 3-8 and Figure 3-9 represents the peak-to-peak noise. If the peak-to-peak noise is outside the specified acceptable voltage range, the decoupling network is inadequate or a problem exists in the PCB layout.
Excessive noise at a certain frequency indicates a frequency where the PDS impedance is too high for the device's transient current demands. Using this information, the designer can modify the PDS to accommodate the transient current at the specific frequency. This is accomplished by either adding capacitors with effective frequencies close to the noise frequency or otherwise lowering the PDS impedance at the critical frequency.

The noise spectrum measurement should be taken in the same manner as the peak-to-peak noise measurement, directly underneath the device, or at a static I/O driven High or Low. A spectrum analyzer takes its measurements using a 50Ω cable instead of an active probe.

- A good method attaches the measurement cable through a coaxial connector tapped into the power and ground planes close to the device. This is not available in most cases.
- Another method attaches the measurement cable at the lands of a decoupling capacitor in the vicinity of the device that has been removed. The cable’s center conductor and shield are soldered directly to the capacitor lands. Alternatively, a probe station with 50Ω RF probes can be used to touch the decoupling capacitor lands.

To protect the spectrum analyzer’s sensitive front-end circuitry, add a DC blocking capacitor or attenuator in line. This isolates the spectrum analyzer from the device supply voltage.

Figure 3-10 is an example of a noise spectrum measurement of the VCCO power-supply noise, with multiple I/O sending patterns at 100 MHz.
Optimum Decoupling Network Design

If a highly optimized PDS is needed, measurements and simulations of a prototype system can inform the PDS design. Using knowledge of the noise spectrum generated by the prototype system along with knowledge of the system’s power system impedance, the unique transient current of the design can be determined and accommodated.

To measure the noise spectrum of the design under operating conditions, use either a spectrum analyzer or an oscilloscope with FFT. The power system impedance can be determined either through direct measurement or simulation, or a combination of these two as there are often many variables and unknowns.

Both the noise spectrum and the impedance are functions of frequency. By examining the quotient of these per frequency point, transient current as a function of frequency is computed (Equation 3-7):

\[
I(f) = \frac{V(f) \text{ From Spectrum Analyzer}}{Z(f) \text{ From Network Analyzer}}
\]

Equation 3-7

Using the data sheet’s maximum voltage ripple value, the impedance value needed at all frequencies can be determined. This yields a target impedance as a function of frequency. A
specially designed capacitor network can accommodate the specific design’s transient current.

Troubleshooting

In some cases the proper design work is done up-front, but noise problems still exist. This next section describes possible issues and suggested resolution methods.

Possibility 1: Excessive Noise from Other Devices on the PCB

Sometimes ground and/or power planes are shared among many devices, and noise from an inadequately decoupled device affects the PDS at other devices. Common causes of this noise are:

- RAM interfaces with inherently high-transient current demands resulting either from temporary periodic contention or high-current drivers
- Large ASICs

When unacceptable amounts of noise are measured locally at these devices, the local PDS and the component decoupling networks should be analyzed.

Possibility 2: Parasitic Inductance of Planes, Vias, or Connecting Traces

Sometimes the decoupling network capacitance is adequate, but there is too much inductance in the path from the capacitors to the AP SoC.

Possible causes are:

- Wrong decoupling capacitor connecting-trace geometry or solder-land geometry
- The path from the capacitors to the AP SoC is too long
- A current path in the power vias traverses an exceptionally thick PCB stackup

For inadequate connecting trace geometry and capacitor land geometry, review the loop inductance of the current path. If the vias for a decoupling capacitor are spaced a few millimeters from the capacitor solder lands on the board, the current loop area is greater than necessary.

To reduce the current loop area, vias should be placed directly against capacitor solder lands. Never connect vias to the lands with a section of trace.
Other improvements of geometry are via-in-pad (via under the solder land), not shown, and via-beside-pad (vias straddle the lands instead of being placed at the ends of the lands). Double vias also improve connecting trace geometry and capacitor land geometry.

Exceptionally thick boards (> 3.2 mm or 127 mils) have vias with higher parasitic inductance.

To reduce the parasitic inductance, move critical V_{CC}/GND plane sandwiches close to the top surface where the AP SoC is located, and place the capacitors on the top surface where the AP SoC is located.

Possibility 3: I/O Signals in PCB are Stronger Than Necessary

If noise in the V_{CCO} PDS is still too high after refining the PDS, the I/O interface slew rate and/or drive strength can be reduced. This applies to both outputs from the AP SoC and inputs to the AP SoC. In severe cases, excessive overshoot on inputs to the AP SoC can reverse-bias the IOB clamp diodes, injecting current into the V_{CCO} PDS.

If large amounts of noise are present on V_{CCO}, the drive strength of these interfaces should be decreased, or different termination should be used (on input or output paths).

Possibility 4: I/O Signal Return Current Traveling in Sub-Optimal Paths

I/O signal return currents can also cause excessive noise in the PDS. For every signal transmitted by a device into the PCB (and eventually into another device), there is an equal and opposite current flowing from the PCB into the device’s power/ground system. If a low-impedance return current path is not available, a less optimal, higher impedance path is used. When I/O signal return currents flow over a less optimal path, voltage changes are induced in the PDS, and the signal can be corrupted by crosstalk. This can be improved by ensuring every signal has a closely spaced and fully intact return path.

Methods to correct a sub-optimal return current path:

- Restrict signals to fewer routing layers with verified continuous return current paths.
- Provide low-impedance paths for AC currents to travel between reference planes (high-frequency decoupling capacitors at PCB locations where layer transitions occur).
SelectIO Signaling

Introduction

The Zynq-7000 AP SoC SelectIO resources are the general-purpose I/O and its various settings. With numerous I/O standards and hundreds of variants within these standards, these SelectIO resources offer a flexible array of choices for designing I/O interfaces.

This chapter provides some strategies for choosing I/O standard, topography, and termination, and offers guidance on simulation and measurement for more detailed decision making and verification. In many cases, higher-level aspects of the system (other device choices or standards support) define the I/O interfaces to be used. In cases where such constraints are not defined, it is up to the system designer to choose I/O interface standards and optimize them according to the purpose of the system.

This chapter contains the following sections:

- Interface Types
- Single-Ended Signaling

Interface Types

To better address the specifics of the various interface types, it is necessary to first break interfaces into categories. Two relevant divisions are made:

- Single-Ended interfaces versus Differential interfaces
- Single Data Rate (SDR) interfaces versus Double Data Rate (DDR) interfaces

Single-Ended versus Differential Interfaces

Traditional digital logic uses single-ended signaling – a convention that transmits a signal and assumes a GND common to the driver and receiver. In single-ended interfaces, a signal's assertion (whether it is High or Low) is based on its voltage level relative to a fixed voltage threshold that is referenced to GND. When the voltage of the signal is higher than the \(V_{IH} \) threshold, the state is considered High. When the voltage of the signal is lower than
the V_{IL} threshold, the state is considered Low. TTL is one common example of a single-ended I/O standard.

To reach higher interface speeds and increase noise margin, some single-ended I/O standards rely on a precise dedicated local reference voltage other than GND. HSTL and SSTL are examples of I/O standards that rely on a V_{REF} to resolve logic levels. V_{REF} can be thought of as a fixed comparator input.

Higher-performance interfaces typically make use of differential signaling – a convention that transmits two complementary signals referenced to one another. In differential interfaces, a signal’s assertion (whether it is High or Low) is based on the relative voltage levels of the two complementary signals. When the voltage of the P signal is higher than the voltage of the N signal, the state is considered High. When the voltage of the N signal is higher than the voltage of the P signal, the state is considered Low. Typically the P and N signals have similar swing, and have a common-mode voltage above GND (although this is not always the case). LVDS is one common example of a differential I/O standard.

SDR versus DDR Interfaces

The difference between Single Data Rate (SDR) and Double Data Rate (DDR) interfaces has to do with the relationship of the data signals of a bus to the clock signal of that bus. In SDR systems, data is only registered at the input flip-flops of a receiving device on either the rising or the falling edge of the clock. One full clock period is equivalent to one bit time. In DDR systems, data is registered at the input flip-flops of a receiving device on both the rising and falling edges of the clock. One full clock period is equivalent to two bit times. The distinction of SDR and DDR has nothing to do with whether the I/O standard carrying the signals is single-ended or differential. A single-ended interface can be SDR or DDR, and a differential interface can also be SDR or DDR.

Single-Ended Signaling

A variety of single-ended I/O standards are available in the Zynq-7000 AP SoC I/O. For a complete list of supported I/O standards and detailed information about each one, refer to the “SelectIO Resources” chapter of UG471, 7 Series FPGAs SelectIO Resources User Guide. Tables at the end of this chapter summarize for each supported I/O standard which ones support DRIVE and SLEW attributes, bidirectional buffers, and the DCI options. It also describes which I/O standards are supported in the high-performance (HP) and high-range (HR) I/O banks.

Modes and Attributes

Some I/O standards can be used only in unidirectional mode, while some can be used in bidirectional mode or unidirectional mode.
Chapter 4: SelectIO Signaling

Some I/O standards have attributes to control drive strength and slew rate, as well as the presence of weak pull-up or pull-down and weak-keeper circuits (not intended for use as parallel termination). Drive strength and slew rate can be used to tune an interface for adequate speed while not overdriving the signals. Weak pull-ups, weak pull-downs, and weak keepers can be used to ensure a known or steady level on a floating or 3-stated signal. The “SelectIO Resources” chapter of UG471, 7 Series FPGAs SelectIO Resources User Guide describes which standards support these attributes. Refer to this user guide for more information.

LVCMOS, when set to 6 mA DRIVE and FAST slew, has an approximate output impedance close to 50Ω, allowing it to be used as a crude approximation of a controlled-impedance driver. The impedance match of the weak driver to the transmission line is only approximate and varies with voltage and temperature.

Input Thresholds

The input circuitry of the single-ended standards fall into two categories: those with fixed input thresholds and those with input thresholds set by the V_REF voltage. The use of V_REF has three advantages:

- It allows for tighter control of input threshold levels
- It removes dependence on die GND for the threshold reference
- It allows for input thresholds to be closer together, which reduces the need for a large voltage swing of the signal at the input receiver

Two 1.8V I/O standards that illustrate this are LVCMOS18 and SSTL18 Class 1. The thresholds for 1.8V LVCMOS are set at 0.63V and 1.17V (necessitating that the signal at the receiver swing a full 540 mV at minimum to make a logic transition). The thresholds for SSTL18 Class 1 are set at V_REF – 0.125V and V_REF + 0.125V, or for a nominal V_REF of 0.9V, set at 0.775V and 1.025V (necessitating that the signal at the receiver only swing 250 mV at minimum to make a logic transition). This smaller required swing allows for higher frequency of operation in the overall link. A smaller swing at the driver means reduced DC power is required with less transient current. A historical drawback to the use of V_REF was that the semi-dedicated V_REF pins of the bank could not be used as I/Os whenever an I/O standard was used in a bank that required the V_REF supply. However, with the 7 series devices, the reference voltage can either be provided using the semi-dedicated V_REF pins, or optionally generated internally using the Internal V_REF feature. See UG471, 7 Series FPGAs SelectIO User Guide for more details on Internal V_REF. For more information on V_REF decoupling and decoupling of all other supplies, see Chapter 3, Power Distribution System.

Topographies and Termination

Topography generally refers to the arrangement of drivers, receivers, interconnect and terminations in an interface. The techniques used in unidirectional topographies are different from those used in bidirectional topographies, so these are treated separately.
The SelectIO standards can be used in countless topographies depending on the requirements of the system. SelectIO drivers and receivers adhering to a standard (SSTL, LVCMOS, etc.) either can be used according to the letter of the standard (published by a standards body such as EIA/TIA or JEDEC) or they can be mixed and matched with drivers or receivers from another standard or hybrid I/O. An I/O standard specification might define something as limited as the V_{IL} and V_{IH} of the receiver, or it might define every aspect of the interface, including driver impedance and slew rate, PCB trace length and topography, value and position of passive termination, the maximum input capacitance of a receiving device, and even the maximum number of receivers.

It is up to the designer to apply the standard in question to the system in which it is working. There are many decisions to make with respect to topographies and termination, which determine the signal integrity of the interface. It is of utmost importance that the signal integrity of each interface be verified through both simulation and measurement.

Termination generally refers to impedance-matching or impedance-compensating devices that are used to maintain signal integrity in an interface. While many types of elements can be used as terminators (such as, resistors, capacitors, diodes), this discussion is limited to resistive termination. In general, capacitor and diode termination techniques are more complicated.

Unidirectional Topographies and Termination

The two basic subsets of unidirectional topographies are point-to-point and multi-drop. A point-to-point topography has one driver and one receiver, while a multi-drop topography has one driver and many receivers. Whether or not a topography is point-to-point or multi-drop defines important aspects of the interface that determine which termination strategies are appropriate and which are not.

Unidirectional Point-to-Point Topographies

The simplest unidirectional topography is point-to-point. That is, there is one driver and one receiver. Termination, if present, can consist of parallel termination at the receiver (Figure 4-1), series termination at the driver (Figure 4-2), or a controlled-impedance driver (Figure 4-3 and Figure 4-4). Always use IBIS simulation to determine the optimal resistor values, V_{TT} voltage level, and VRN/VRP reference resistors for these terminations.
In general, parallel resistive termination (R_P) has a value equal to the characteristic impedance (Z_0) of the transmission line it is terminating. Series resistive terminations (R_S) have a value equal to the characteristic impedance of the transmission line (Z_0) minus the output impedance of the driver (R_O) to which they are connected. Controlled-impedance drivers are tuned such that the driver output impedance (R_O) is equal to the characteristic impedance (Z_0) of the transmission line it is terminating.

Assuming transmission lines with 50Ω characteristic impedance and a driver output impedance (R_O) of 25Ω, a 25Ω series termination (Figure 4-2) or a 50Ω parallel termination is appropriate. Controlled-impedance drivers, whether implemented with DCI or with weak LVCMOS drivers, should be sized to have an output impedance (R_O) of 50Ω. This corresponds to VRN and VRP resistors equal to 50Ω for DCI. Weak LVCMOS drivers of 6 mA to 8 mA drive strength have an output impedance approximately equal to 50Ω (Figure 4-3).

Typically, parallel terminations have best performance when V_{TT} (the voltage source connected to the parallel termination resistor) is equal to half of the signaling voltage. For 2.5V signals (V_{CCO} = 2.5V), V_{TT} is ideally 1.25V. In cases where this voltage is not available, it is possible to use a Thevenin parallel termination. Thevenin parallel termination consists of a voltage divider with a parallel equivalent resistance (R_{PEQ}) equal to the characteristic impedance of the transmission line (50Ω in most cases). The divided voltage point is designed to be at V_{TT}. Figure 4-5 illustrates a Thevenin parallel termination powered from 2.5V V_{CCO}, made up of two 100Ω resistors, resulting in a V_{TT} of 1.25V and a parallel equivalent resistance (R_{PEQ}) of 50Ω.
Parallel termination can be less desirable than series termination or controlled-impedance drivers because it dissipates more power. This trade-off must be weighed against other trade-offs to determine the optimum termination topography for an interface.

![Thevenin Parallel Termination](image)

Table 4-1: Example I/O Interface Type for Unidirectional Point-to-Point Topographies

<table>
<thead>
<tr>
<th>I/O Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVTTL</td>
</tr>
<tr>
<td>LVCMOS</td>
</tr>
<tr>
<td>LVDCI</td>
</tr>
<tr>
<td>SSTL Class I</td>
</tr>
<tr>
<td>HSTL Class I</td>
</tr>
</tbody>
</table>

LVTTL and LVCMOS do not specify any canonical termination method. Series termination at the driver or parallel termination at the receiver are both appropriate considerations.

LVDCI implicitly uses controlled-impedance driver termination. No form of termination is needed at the receiver.

Every I/O standard can have different requirements for termination techniques. In some cases the specification for the I/O standard can rigidly define the termination topology. Other standards might not have any hard requirements, but rather might simply provide examples of termination topologies. An example of a standard with specific termination requirements is HSTL. HSTL Class I is a unidirectional I/O standard that recommends a parallel termination at the receiver. In the case of HSTL Class I, the termination voltage V_{TT} is defined as half of the supply voltage V_{CC}. The designer can ultimately elect either not to use termination at all or to use a different termination, such as series termination at the driver. There are a number of reasons why this selection might be advantageous in a given system. It is up to the designer to verify through simulation and measurement that the signal integrity at the receiver is adequate.
The SSTL standards tend to not have rigid requirements for termination topology. Rather, the JEDEC specifications provide example termination techniques that tend to be the commonly used topographies. The “SelectIO Resources” chapter of UG471, 7 Series FPGAs SelectIO Resources User Guide provides example termination techniques for each of the I/O standards, including the SSTL standards, for the purpose of providing a good starting point for consideration. Similar to HSTL, it is ultimately up to the designer to verify through simulation and measurement that the signal integrity at the receiver is adequate.

Unidirectional Multi-Drop Topographies

In more complex topographies, a single driver can drive multiple receivers. The receivers represent loads that must be fed by individual transmission line stubs. From a signal integrity standpoint, the best topography to use in this case is a single long transmission line with the driver at one end and parallel termination at the other, with receivers connected to the main trace by short stubs in between. This type of topography is often referred to as a flyby multi-drop topography.

There are two critical aspects of this topography. The first is the presence of a single parallel termination at the far end of the transmission line. Series termination at the driver or a controlled impedance driver must never be used. Parallel termination is the only applicable termination type for this topography. The second critical aspect is the length of the connecting stubs at each receiver. These must remain short: no more than a fraction of a signal rise time in length. With a typical signal rise time of 600 ps, a stub no longer than 700 ps/4 = 150 ps, or 0.9 inches (22.86 mm) should be used. As the stubs become longer, they present a larger impedance discontinuity to the signal travelling down the transmission line, and can support significant reflections. These impedance discontinuities corrupt the signal. With increasing numbers of loads and increasing length of stubs, the signal is corrupted to the point where it is no longer usable.

Star topographies are not recommended. The constraints involved in designing a star topography with good signal integrity are beyond the scope of this document.

As stated in Unidirectional Point-to-Point Topographies, ideal parallel resistive termination has a value equal to the characteristic impedance of the transmission line it is terminating. The best performance is achieved when V_{TT} is equal to half of the signaling voltage, and when this voltage is not available, a Thevenin parallel termination is recommended, as defined in the previous section.

Figure 4-6 illustrates a Thevenin parallel termination powered from V_{CCO}, made up of two 100Ω resistors, resulting in a V_{TT} of $V_{CCO}/2$ and a parallel equivalent resistance of 50Ω. This figure shows a topography with one driver (an LVCMOS driver) and four receivers. The driver is on the left side, the receivers are spaced at interim points across the 50Ω transmission line, and the Thevenin parallel termination of two 100Ω resistors is on the right side.
Chapter 4: SelectIO Signaling

The main transmission line should be kept as short as possible. Lengths up to 20 inches or more are practical for most I/O standards as long as precise trace impedance is maintained and crosstalk sources are avoided. The lengths of interim segments of the main transmission line need not be equal. Their relative lengths can be arbitrary. Receivers at different points along the main transmission line receive the signal with varying amounts of delay, but all signal rise times are similar.

Stubs stretching from the main transmission line to the individual receivers must be kept as short as possible. The longer these stubs become, the more corrupted the received waveforms are. Simulation and measurement are required to assess signal integrity at the individual receivers.

Table 4-2 lists example I/O interface types that can be used with the unidirectional multi-drop topography.

Table 4-2: Example I/O Interface Types for Unidirectional Multi-Drop I/O Topographies

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVTTL</td>
<td></td>
</tr>
<tr>
<td>LVCMOS</td>
<td></td>
</tr>
<tr>
<td>HSTL</td>
<td></td>
</tr>
<tr>
<td>SSTL</td>
<td></td>
</tr>
</tbody>
</table>

LVTTL and LVCMOS do not specify any canonical termination method. Parallel termination at the end of the long t-line is an appropriate termination method.

Bidirectional Topography and Termination

The two basic subsets of bidirectional topographies are point-to-point and multi-point. A point-to-point topography has two transceivers (driver and receiver sharing one device pin), while a multi-point topography can have many transceivers. Whether or not a
topography is point-to-point or multi-point defines important aspects of the interface that determine which termination strategies are appropriate and which are not.

Bidirectional Point-to-Point Topographies

The simplest bidirectional topography is point to point. That is, there are two transceivers connected by a transmission line. Because bidirectional interfaces need to operate equally well in both directions, symmetry of the topography is desirable. While asymmetrical topographies can be designed with reasonably good signal integrity, the easiest way to ensure good signal integrity is to keep the topography symmetrical. Thus any termination used on one side of the link should also be used on the other side of the link. Series termination (Figure 4-8) is rarely appropriate for bidirectional interfaces as incoming signals are attenuated by the series resistor of the receiving transceiver. Parallel termination (Figure 4-7) almost always achieves better signal levels at both receivers. Controlled-impedance drivers, whether crudely controlled in the form of a weak LVCMOS driver or adaptively controlled in the form LVDCI or HSLVDCI, also can have good results as shown in Figure 4-9, Figure 4-10, and Figure 4-11 (implemented with a low-drive strength LVCMOS driver). Always use IBIS simulation to determine the optimal termination resistor value, V_{TT} voltage level and VRN/VRP reference resistor values for these terminations.

![Parallel Terminated Bidirectional Point-to-Point Topography](image1)

Figure 4-7: Parallel Terminated Bidirectional Point-to-Point Topography

![Series Terminated Bidirectional Point-to-Point Topography: Not Recommended](image2)

Figure 4-8: Series Terminated Bidirectional Point-to-Point Topography: Not Recommended
In general, parallel resistive termination (R_P) has a value equal to the characteristic impedance Z_0 of the transmission line it is terminating. Some interfaces, such as DDR2 memory interfaces, use 75Ω termination resistors instead of 50Ω in an effort to open the data eye. In this case, the trade-off is eye height against a small amount of signal reflection from the impedance discontinuity. Controlled-impedance drivers are typically tuned such that the driver output impedance (R_O) is equal to the characteristic impedance (Z_0) of the transmission line it is terminating.

Assuming transmission lines with 50Ω characteristic impedance and a driver output impedance of 25Ω, 50Ω parallel terminations are appropriate (Figure 4-7). Controlled-impedance drivers, whether implemented with DCI or with weak LVCMOS drivers, should be sized to have an output impedance (R_O) of 50Ω. An example of the use of a controlled-impedance driver would be the LVDCI_15 I/O standard. By using 50Ω
external precision resistors placed on the VRN and VRP pins for that bank, the resulting controlled output impedance for that bank would be 50Ω. If 100Ω resistors were already required on the VRN and VRP pins (for the purpose of creating a Thevenin-equivalent split termination circuit equal to 50Ω), and a 50Ω controlled impedance driver was required in the same bank, this could be accomplished by using the “DIV2” versions of the drivers, such as LVDCI_DIV2_15 (Figure 4-9 and Figure 4-10). Weak LVCMOS drivers of 6 mA to 8 mA drive strength have an output impedance approximately equal to 50Ω (Figure 4-11).

Parallel terminations have the best performance when V_{TT} (the voltage source connected to the parallel termination resistor) is equal to half of the signaling voltage, since this is typically the center voltage of the data eye. For 2.5V signals ($V_{CCO} = 2.5V$), V_{TT} is ideally 1.25V. In cases where this voltage is not available, it is advisable to use a Thevenin parallel termination. Thevenin parallel termination consists of a voltage divider with a parallel resistance equal to the characteristic impedance of the transmission line (50Ω in most cases). The divided voltage point is designed to be at V_{TT}. Figure 4-12 illustrates a Thevenin parallel termination powered from 2.5V V_{CCO}, made up of two 100Ω resistors, resulting in a V_{TT} of 1.25V and a parallel equivalent resistance (R_{PEQ}) of 50Ω.

Parallel termination can be less desirable than series termination or controlled-impedance drivers because it dissipates more power. This trade-off must be weighed against other trade-offs to determine the optimum termination topography for an interface.

![Figure 4-12: Thevenin Parallel Termination (Bidirectional Point-to-Point Topography)](image)

Table 4-3 lists example I/O interface types that can be used with the bidirectional point-to-point topography.

| Table 4-3: Example I/O Interface Types for Bidirectional Point-to-Point I/O Topographies |
|-------------------------------|--------------------------|
| LVTTL | LVCMOS |
| LVDCI | HSLVDCI |
| SSTL15 | |
LVTTL and LVCMOS do not specify any canonical termination method. Series termination is not recommended for bidirectional interfaces. Parallel termination and weak drivers, however, are both appropriate.

LVDCI and HSLVDCI both implicitly use controlled-impedance driver termination.

HSTL Class II specifies parallel termination at both transceivers. The termination voltage V_{TT} is defined as half of the supply voltage V_{CCO}. The designer can elect either not to use termination at all or to use a different termination. It is up to the designer to verify through simulation and measurement that the signal integrity at the receiver is adequate.

The JEDEC specifications for SSTL provide examples of both series termination and parallel termination. The termination voltage V_{TT} is defined as half of the supply voltage V_{CCO}. While the specification document provides examples depicting series termination at the drivers, it is important to note that the purpose of this is to attempt to match the impedance of the driver with that of the transmission line. Because the Zynq-7000 AP SoC SSTL drivers target to have output impedances close to 40–50Ω, better signal integrity can be achieved without any external source-series termination. When possible, it is a better starting point to consider the use of the 3-state DCI I/O standards ("T_DCI"), which provide internal parallel termination resistors that are only present when the output buffer is in 3-state. It is up to the designer to carefully choose the I/O standard(s) at the 7 series device, drive strengths, and on-die termination (ODT) options at the other device(s) in the interface (usually DRAM ICs) and termination topography though careful simulation and measurement. See UG471, 7 Series FPGAs SelectIO User Guide for more details on the available I/O standards and options.

Bidirectional Multi-Point Topographies

In more complex topographies, any transceiver in a multi-point bus can transmit to all other transceivers. Usually these topographies can only run at very slow clock rates because they only support very slow signal rise times (10 ns to 50 ns). While useful in some situations, the drawbacks usually outweigh the benefits. The constraints involved in designing these topographies with good signal integrity are beyond the scope of this document.
Chapter 5

Processing System (PS) Power and Signaling

Power

Zynq-7000 AP SoC devices are divided into several power domains. Figure 5-1 shows an overview of those domains.

![Figure 5-1: Power Domains](UG933_c5_01_051212)

Main Power Supplies

\(V_{CCPINT} – PS Internal Logic Supply\)

\(V_{CCPINT}\) is a 1.0V nominal supply that powers all of the PS internal logic circuits. This supply can be combined with \(V_{CCINT}\) if the system does not require the PL supply to be powered down independent of the PS.

\(V_{CCPAUX} – PS Auxiliary Logic Supply\)

\(V_{CCPAUX}\) is a 1.8V nominal supply that powers all of the PS auxiliary circuits. One of the 0.47 µF capacitors must have less than a 200 mil (5.1 mm) total PCB trace length from the...
capacitor to the adjacent \(V_{CCPAUX} \) and GND BGA vias. This supply can be combined with \(V_{CCAUX} \) if the system does not require the PL supply to be powered down independent of the PS.

\(V_{CCPLL} \) – PS PLL Supply

\(V_{CCPLL} \) is a 1.8V nominal supply that provides power to the three PS PLLs and additional analog circuits. It can be powered separately or derived from the \(V_{CCPAUX} \) supply. If powered by \(V_{CCPAUX} \), \(V_{CCPLL} \) must be filtered through a \(120 \Omega \) @ 100 MHz, size 0603 ferrite bead and a 10 \(\mu F \) or larger, size 0603 decoupling capacitor. In both cases a 0.47 \(\mu F \) to 4.7 \(\mu F \) 0402 capacitor must be placed near the \(V_{CCPLL} \) BGA via.

The PCB construction of the \(V_{CCPLL} \) power supply must be carefully managed. The recommended connection between the 10 \(\mu F \) 0603 capacitor and the \(V_{CCPLL} \) BGA ball is a planelet with a minimum width of 80 mil (2 mm) and a length of less than 3,000 mil (76 mm). If a planelet cannot be used then a trace with a maximum impedance of 40\(\Omega \) and a length of less than 2,000 mil (50.8mm) must be used. The 0.47 \(\mu F \) to 4.7 \(\mu F \) 0402 or 0201 capacitor must have a less than a 200 mil (5.1 mm) total PCB trace length from the capacitor to the adjacent \(V_{CCPLL} \) and GND BGA vias.

Figure 5-2 shows an example of the filtering and local capacitor circuit used when \(V_{CCPLL} \) is derived from \(V_{CCPAUX} \). **Figure 5-3** shows an example of the layout of the same filtering circuit for the CLG484 package.

The recommended components are:

- Ferrite bead – Murata BLM18SG121TN1
- 10 \(\mu F \) capacitor – Murata GRM188R60G106ME47
- 0.47\(\mu F \)-4.7\(\mu F \) capacitor – Murata GRM155R60J474KE19

Figure 5-2: Connecting \(V_{CCPLL} \)
Chapter 5: Processing System (PS) Power and Signaling

PS DDR Power Supplies

$V_{CCO_DDR} – PS DDR I/O Supply$

V_{CCO_DDR} is a 1.2V–1.8V nominal supply that supplies the DDR I/O bank input and output drivers. This supply sources the DDR output drivers, input receivers and termination circuitry. Its requirements are defined by the type of interface (DDR2, DDR3/3L or LPDDR2), memory speed, and the data bus width. Table 5-1 shows the supply voltages for the different memory types.

<table>
<thead>
<tr>
<th>DDR interface</th>
<th>DDR2</th>
<th>DDR3/3L</th>
<th>LPDDR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>1.8V</td>
<td>1.5V</td>
<td>1.2V</td>
</tr>
</tbody>
</table>

$PS_DDR_VREF0, PS_DDR_VREF1 – PS DDR Reference Voltage$

PS_DDR_VREF0 and PS_DDR_VREF1 provide a voltage reference for the PS_DDR_DQ and PS_DDR_DQS differential input receivers. They need to be tied to a termination voltage (V_{tt}) equal to $V_{CCO_DDR}/2$. For example, for DDR3, V_{CCO_DDR} is set to 1.5V, then V_{REF} shall be set to 0.75V. A resistor divider can be used to generate PS_DDR_VREF0 and PS_DDR_VREF1. A 0.01 μF – 0.47 μF capacitor shall be added for decoupling. The PS DDR reference voltage can also be generated internally. For LPDDR2, PS_DDR_VREF0/1 shall be set to VDDq/2 in accordance with the HSUL_12 I/O standard. See section 2.5.7 (MIO Pin Electrical Parameters) in UG585, Zynq-7000 All Programmable SoC Technical Reference Manual.
Chapter 5: Processing System (PS) Power and Signaling

PS_DDR_VRN, PS_DDR_VRP – PS DDR Termination Voltage

PS_DDR_VRN and PS_DDR_VRP provide a reference for dynamic controlled impedance (DCI) calibration. For memory types that require termination (DDR2, DDR3) VRP must be pulled Low to GND and VRN needs to be pulled High to VCCO_DDR. For DDR2/3, the resistor value on VRP and VRN should be twice the memory’s trace and termination impedance. For example, for a DDR3 memory with a 40Ω termination and board impedance, an 80Ω resistor must be used to pull-up/down VRP and VRN. For LPDDR2, the DCI tunes the output impedance of the driver and therefore the resistor value on VRP and VRN should be equal to the transmission line impedance, typically set to 40Ω.

Table 5-2 shows the required values for the DCI VRN/VRP pull-down/pull-up resistors.

Table 5-2: DCI VRP and VRN Values

<table>
<thead>
<tr>
<th>VRP/VRN</th>
<th>LPDDR2</th>
<th>DDR2</th>
<th>DDR3/3L</th>
</tr>
</thead>
<tbody>
<tr>
<td>(type I DCI trace impedance 40Ω)</td>
<td>40Ω</td>
<td>100Ω</td>
<td>(type III DCI trace impedance 40Ω)</td>
</tr>
<tr>
<td>(type III DCI trace impedance 50Ω)</td>
<td></td>
<td></td>
<td>(type III DCI trace impedance 40Ω)</td>
</tr>
</tbody>
</table>

Unused DDR Memory

When no PS DDR memory is used, VCCO_DDR should be tied to VCCPAUX. PS_DDR_VREF0/1 and PS_DDR_VRN/P should be left floating.

PS MIO Power Supplies

VCCO_MIO0 – PS MIO Bank 0 I/O Supply

VCCO_MIO0 is a 1.8–3.3 volt supply. It powers I/O Bank 500 which contains PS_MIO[15:0], PS_CLK, and PS_POR_B I/Os.

VCCO_MIO1 – PS MIO Bank 1 I/O Supply

VCCO_MIO1 is a 1.8-3.3 volt supply. It powers I/O Bank 501 which contains PS_MIO[53:16], PS_VREF_MIO, and PS_SRST_B I/Os.

Configuring the VCCO_MIO0, VCCO_MIO1 Voltage Mode

The PS I/O banks can operate in two different voltage modes, low (1.8V) mode and high (2.5V – 3.3V) mode. Before powering on, the banks must be configured for the correct mode otherwise, damage might occur. The I/O bank voltage is set by pulling pins MIO[7] and MIO[8] either High or Low. Table 5-3 shows the voltage mode configuration (VMODE) for MIO Bank 0 and Bank 1.
MIO[7] and MIO[8] are dual use pins that are shared with the high-speed QSPI/NAND/SRAM interface signals. Special care needs to be taken to avoid signal integrity issues.

CAUTION! If the MIO bank voltage is incorrectly set, the I/O behaves unpredictably and damage might occur. For example, avoid setting the MIO voltage to 3.3V while using HSTL18. Any pull-up resistors should only connect to \(V_{CCO,MIO0} \).

Table 5-3: Voltage Mode Configuration

<table>
<thead>
<tr>
<th>I/O Bank</th>
<th>I/O Supply Name</th>
<th>Programming Pin</th>
<th>1.8V Mode</th>
<th>2.5V, 3.3V Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIO Bank 0</td>
<td>(V_{CCO,MIO0})</td>
<td>MIO[7]</td>
<td>20 (\Omega) resistor to (V_{CCO,MIO0})</td>
<td>20 (\Omega) resistor to ground</td>
</tr>
<tr>
<td>MIO Bank 1</td>
<td>(V_{CCO,MIO1})</td>
<td>MIO[8]</td>
<td>20 (\Omega) resistor to (V_{CCO,MIO0})</td>
<td>20 (\Omega) resistor to ground</td>
</tr>
</tbody>
</table>

PS_MIO_VREF – RGMII Reference Voltage

PS_MIO_VREF provides a reference voltage for the RGMII input receivers. If RGMII is being used, this pin should be tied to a voltage equal to one half \(V_{CCO,MIO1} \). For example, when using a HSTL18 RGMII interface, \(V_{CCO,MIO1} \) is set to 1.8V then PS_MIO_VREF shall be set to be 0.9V. A resistor divider can be used to generate PS_MIO_REF. A 0.01 \(\mu \)F capacitor shall be added for decoupling. If RGMII is not being used, PS_MIO_VREF is safe to float.

Power Sequencing

Refer to [DS187](https://www.xilinx.com), Zynq-7000 All Programmable SoC (Z-7010, Z-7015, and Z-7020): DC and AC Switching Characteristics and [DS191](https://www.xilinx.com), Zynq-7000 All Programmable SoC (Z-7030, Z-7045, and Z-7100): DC and AC Switching Characteristics for power supply sequencing requirements.

Power Supply Ramp Requirements

PCB Decoupling Capacitors

Decoupling guidelines for the PS supplies can be found in [Table 3-2, page 14](https://www.xilinx.com).
Chapter 5: Processing System (PS) Power and Signaling

PS Clock and Reset

PS_CLK – Processor Clock

PS_CLK shall be connected to a clock generator providing a 30-60 MHz clock. The clock must be a single-ended LVCMOS signal, using the same voltage level as the VCCO_MIO0 I/O voltage for bank MIO0. Refer to DS187, Zynq-7000 All Programmable SoC (Z-7010, Z-7015, and Z-7020): DC and AC Switching Characteristics and DS191, Zynq-7000 All Programmable SoC (Z-7030, Z-7045, and Z-7100): DC and AC Switching Characteristics for further PS_CLK requirements.

PS_POR_B – Power on Reset

The PS power-on reset (PS_POR_B) is an active-Low signal used to hold the PS in reset until all PS power supplies are stable and at their required voltage levels. It is suggested to generate this signal from the power supply power-good signal or a voltage supervisor chip.

PS_SRST_B – External System Reset

The PS system reset (PS_SRST_B) is an active-Low signal that is mostly used for debugging proposes. PS_SRST_B must be High to begin the boot process. If PS_SRST_B is not used it can be pulled High to VCCO_MIO1.

Boot Mode Pin MIO[8]

MIO[8] is used to configure the boot mode, PLL bypass, and MIO voltage. All designs must include a 20 KΩ pull-up or pull-down resistor on this pin to set the required setting.

MIO[8] is a dual use pin that is shared with the high-speed QSPI/NAND/SRAM interface signals. Special care needs to be taken to avoid signal integrity issues. To avoid signal integrity issues, limit the stub length to the pull-up or pull-down resistor to < 10 mm.

When system design requires the modes to be changeable, it is recommended to not use a resistor tree to set the mode but instead connect one pull-up/down resistor to the mode pin and place a jumper on the other side of the resistor to select between pull-up or pull-down. See Figure 5-4 for an example.

Note: PROGRAM_B, INIT_B, and DONE should not be left floating. Refer to UG470, 7 Series FPGAs Configuration User Guide for more information on how to treat these pins.

Note: The PL system JTAG interface, PL_JTAG, should have its signals TDI, TMS, and TCK pulled-up.
Dynamic Memory

Zynq-7000 AP SoC devices support DDR2, DDR3/3L, and LPDDR2 (mobile DDR) dynamic memory. The memory is connected to dedicated pins in I/O Bank 502. This bank has dedicated I/O, termination, and reference voltage supplies.

DDR runs at very high speeds and special care need to be taken in board layout to ensure signal integrity. The following sections show the recommendations for DDR memory designs for Zynq-7000 AP SoC devices.

DDR Interface Signal Pins

Table 5-4 lists all dynamic memory interface signals in Bank 502.

Table 5-4: DDR Interface Signal Pins

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR_CK_P</td>
<td>O</td>
<td>Differential clock output positive</td>
</tr>
<tr>
<td>DDR_CK_N</td>
<td>O</td>
<td>Differential clock output negative</td>
</tr>
<tr>
<td>DDR_CKE</td>
<td>O</td>
<td>Clock enable</td>
</tr>
<tr>
<td>DDR_CS_B</td>
<td>O</td>
<td>Clock select</td>
</tr>
<tr>
<td>DDR_RAS_B</td>
<td>O</td>
<td>RAS row address select</td>
</tr>
<tr>
<td>DDR_CAS_B</td>
<td>O</td>
<td>CAS column address select</td>
</tr>
<tr>
<td>DDR_WE_B</td>
<td>O</td>
<td>Write enable</td>
</tr>
<tr>
<td>DDR_BA[2:0]</td>
<td>O</td>
<td>Bank address</td>
</tr>
<tr>
<td>DDR_A[14:0]</td>
<td>O</td>
<td>Address</td>
</tr>
<tr>
<td>DDR_ODT</td>
<td>O</td>
<td>Output dynamic termination</td>
</tr>
<tr>
<td>DDR_DRST_B</td>
<td>O</td>
<td>Reset</td>
</tr>
</tbody>
</table>
Chapter 5: Processing System (PS) Power and Signaling

Unused DDR pins should be connected as shown in Table 5-5.

For designs utilizing single-ended DQS, connect the DQS signal to DQS_P. DQS_N can either be connected to the DQS_B I/O of the SDRAM, or via resistor divider to VCCO/2.

Table 5-5: DDR Unused Pins

<table>
<thead>
<tr>
<th>Unconnected Pins</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR Unused Pins, x16 non-ECC</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Unconnected</td>
</tr>
<tr>
<td>DQ IO</td>
<td>Unconnected DQS IO</td>
</tr>
<tr>
<td>IO</td>
<td>Unconnected, internal pull-up by software</td>
</tr>
<tr>
<td>DDR Unused Pins, x16 ECC</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Unconnected</td>
</tr>
<tr>
<td>Other IO</td>
<td>Unconnected, internal pull-up by software</td>
</tr>
</tbody>
</table>

Dynamic Memory Implementation

Figure 5-5, Figure 5-6 and Figure 5-7 show examples of implementing DDR memory on typical boards.
Figure 5-5: DDR3/3L Board Implementation
Figure 5-6: DDR2 Board Implementation
Chapter 5: Processing System (PS) Power and Signaling

DDR Supply Voltages

Table 5-6 lists the different supply, reference and termination voltages required for LPDDR2/DDR2/DDR3 memory. These voltages are also required to power the DDR I/O bank, reference, and termination voltages.

Note: VREF should track the midpoint of the VDD supplied to the DRAM and ground via low-impedance paths. This can be done with a resistive divider or by a regulator that tracks this midpoint. If resistive dividers are used, a separate divider and high-frequency decoupling capacitor is recommended for each IC. If a regulator is used, a low impedance plane or planelet is recommended for distribution.

Table 5-6: DDR Voltage

<table>
<thead>
<tr>
<th>Voltage</th>
<th>LPDDR2</th>
<th>DDR2</th>
<th>DDR3</th>
<th>DDR3L</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CCO_DDR}</td>
<td>1.2V</td>
<td>1.8V</td>
<td>1.5V</td>
<td>1.35V</td>
<td>LPDDR2 devices also require V_{DD1} (1.8V) and V_{DD2} (1.2V)</td>
</tr>
</tbody>
</table>
Chapter 5: Processing System (PS) Power and Signaling

DDR Termination

For better signal integrity, DDR2 and DDR3 clock, address, command and control signals need to be terminated. For DDR2, ODT and CKE are not terminated and should be pulled down during memory initialization with a 4.7 kΩ resistor to GND. For DDR3, the DRST_B signal is not terminated and should be pulled down during memory initialization with a 4.7 kΩ resistor to GND.

LPDDR2 does not require termination.

Table 5-7 shows the DDR termination requirements.

Table 5-7: DDR Termination

<table>
<thead>
<tr>
<th>Termination</th>
<th>LPDDR2</th>
<th>DDR2</th>
<th>DDR3/3L</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rterm</td>
<td>N/A</td>
<td>50Ω</td>
<td>40Ω</td>
<td></td>
</tr>
<tr>
<td>Rclk</td>
<td>N/A</td>
<td>100Ω</td>
<td>80Ω</td>
<td></td>
</tr>
<tr>
<td>Rdown</td>
<td>4.7KΩ</td>
<td>4.7 KΩ</td>
<td>4.7 KΩ</td>
<td>There is no DDR_DRST_B in LPDDR2/DDR2 device side</td>
</tr>
</tbody>
</table>

Note: DDR3 memory also supports terminated DQS signals through the TDQS_P and TDQS_N pins. This feature is not supported on Zynq-7000 AP SoC devices and those pins should be left floating.

DDR Trace Length

All DDR memory devices should be placed as closely to the Zynq-7000 AP SoC device as possible. **Table 5-8** shows the maximum recommended trace lengths for DDR signals.

Table 5-8: DDR Max Trace Length

<table>
<thead>
<tr>
<th>Signal Group</th>
<th>LPDDR2</th>
<th>DDR2</th>
<th>DDR3/3L</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Group</td>
<td>1.5”</td>
<td>2”</td>
<td>2”</td>
<td>Without guard-band</td>
</tr>
<tr>
<td></td>
<td>5”</td>
<td>5”</td>
<td></td>
<td>With guard-band(1)</td>
</tr>
<tr>
<td>Address, Command, Control</td>
<td>1.5”</td>
<td>3”</td>
<td>3”</td>
<td>Without guard-band</td>
</tr>
<tr>
<td></td>
<td>6”</td>
<td>6”</td>
<td></td>
<td>With guard-band(1)</td>
</tr>
</tbody>
</table>

Notes:
1. A guard-band is a ring of copper driven by a low-impedance source to the same voltage as the high impedance node. It is used to protect against surface leakage currents.
In addition, DDR signals also require matched trace delays, which include package delays. Table 5-9 shows the recommended delay matching for DDR. Differential traces should be delay matched such that the signal crossing point occurs in the linear region of the rising and falling edges.

The skew limits can be increased if the memory interface is not operated at the maximum frequency, and/or if a faster memory device is utilized. If running a DDR2 interface at 800 MHz, using a 1,066 MHz memory relaxes the skew from 20 pS to 82 pS. If running a DDR3 interface at 1,066 MHz, using a 1,333 MHz memory device relaxes the skew from 10 pS to 45 pS.

Table 5-9: DDR Delay Match

<table>
<thead>
<tr>
<th>Signal Group</th>
<th>LPDDR2</th>
<th>DDR2</th>
<th>DDR3/3L</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ/DM to DQS_P/N in data group</td>
<td>±10 ps</td>
<td>±20 ps</td>
<td>±10 ps</td>
<td></td>
</tr>
<tr>
<td>Address/Control to CK_P/N</td>
<td>±10 ps</td>
<td>±25 ps</td>
<td>±10 ps</td>
<td></td>
</tr>
</tbody>
</table>

To ensure proper write leveling for DQS to clock delays, route the CK trace to be equal to or longer than the DQS trace per byte lane.

DDR Trace Impedance

All DDR signals except DDR_DRST_B require controlled impedance. DDR_CKE also requires controlled impedance in DDR3/3L. Table 5-10 shows the required trace impedance for DDR signals.

Table 5-10: DDR Trace Impedance

<table>
<thead>
<tr>
<th>Signal Group</th>
<th>LPDDR2</th>
<th>DDR2</th>
<th>DDR3/3L</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-ended</td>
<td>40Ω</td>
<td>50Ω</td>
<td>40Ω</td>
<td>±10% tolerance</td>
</tr>
<tr>
<td>Differential</td>
<td>80Ω</td>
<td>100Ω</td>
<td>80Ω</td>
<td>±10% tolerance</td>
</tr>
</tbody>
</table>

DDR3 and LPDDR2 memory also require an additional resistor connected to the ZQ pin to calibrate the device's output impedance. Table 5-11 shows the required RZQ values.

Table 5-11: DDR ZQ

<table>
<thead>
<tr>
<th>ZQ</th>
<th>LPDDR2</th>
<th>DDR2</th>
<th>DDR3/3L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rzq</td>
<td>240Ω</td>
<td>N/A</td>
<td>240Ω</td>
</tr>
</tbody>
</table>

DDR Routing Topology

Based on the chosen memory type, the number of memory devices and layout requirements, different routing topologies can be used for DDR memory. Figure 5-8 shows two different topologies.
Chapter 5: Processing System (PS) Power and Signaling

Note: For PS_DDR_DQxx, ensure that byte lines are kept together. PS_DDR_ADDR0 should always be used. If bits must be omitted for chip select or other functionality, omit upper bit (PS_ADDR14) instead.

In a balanced T-branch configuration, trace lengths TL1, TL2 and Tsub shall be kept as short as possible; Rterm shall be close to and balanced among the loads.

In a point-to-point configuration, Rterm shall be placed behind and close to the last load.

In the fly-by topology, TL0 should be kept from 0-64 mm, with T1 14mm ±0.1mm, and TL2 from 6-20 mm.

Table 5-12 shows the recommended routing topologies. Byte and bit swapping is allowed to facilitate PCB routing, except for LPDDR2, which specifically forbids swapping. When swapping bits, keep all bits within the same byte group.

Table 5-12: DDR Routing Topology

<table>
<thead>
<tr>
<th>Signal Group</th>
<th>LPDDR2</th>
<th>DDR2</th>
<th>DDR3/3L</th>
<th>Number of DDR Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Point-to-point</td>
<td>Point-to-point</td>
<td>Point-to-point</td>
<td></td>
</tr>
<tr>
<td>Clock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Point-to-point</td>
<td>Point-to-point</td>
<td>Point-to-point</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>T-branch</td>
<td>T-branch</td>
<td>Fly-by</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>T-branch</td>
<td>Fly-by</td>
<td>4</td>
</tr>
<tr>
<td>Address, Command,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>Point-to-point</td>
<td>Point-to-point</td>
<td>Point-to-point</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>T-branch</td>
<td>T-branch</td>
<td>Fly-by/T-branch</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>T-branch</td>
<td>Fly-by/T-branch</td>
<td>4</td>
</tr>
</tbody>
</table>
Chapter 5: Processing System (PS) Power and Signaling

MIO/EMIO IP Layout Guidelines

This section lists MIO/EMIO interface-specific layout guidelines.

CAN (Controller Area Network)

A level shifter must be implemented if using a CAN PHY that operates at 5.0V.

Ethernet GEM

Depending which RGMII specification the external PHY supports, the TX/RX clocks might need to be delayed on the PCB relative to their respective data and control lines:

- PHYs that support RGMII v1.3
 - Requires clock to be delayed using longer PCB routes by 1.5 ns – 2.0 ns with respect to average delay of DATA[3:0] and CTL
 - Delay skew for DATA[3:0] and CTL should be less than 100 ps including package time
- PHYs that support RGMII v2.0 without internal delays
 - Requires clock to be delayed using longer PCB routes by 1.5 ns – 2.0 ns with respect to average delay of DATA[3:0] and CTL
 - Delay skew for DATA[3:0] and CTL should be less than 100 ps including package time
- PHYs that support RGMII v2.0 with internal delays (RGMII-ID)
 - Delay skew for DATA[3:0] and CTL to clock delay should be less than ±50 ps including package time

When using EMIO to connect to the PL, ensure that all clocks (TX and RX) route using clock-capable I/Os.

IIC

A 4.7 kΩ pull-up resistor shall be placed at the far end of the SCL and SDA lines, furthest from the Zynq-7000 AP SoC device. A level-shifter/repeater might be required depending on the particular multiplexers used. PCB and package delay skew for IIC_SDA to IIC_SCL should be less than ±500 ps.

SDIO

A 40Ω–60Ω series resistor should be placed on the CLK line, as close to the MIO pin as possible. A level-shifter might be required depending on the particular voltages used on
the Zynq-7000 AP SoC device and SD chip. PCB and package delay skew for SD_DAT[0:3] and SD_CMD relative to SD_CLK should be less than ±50 ps. Asynchronous signals SD_CDn and SD_WPn have no timing relationship to SD_CLK.

RECOMMENDED: It is highly recommended to perform a signal integrity analysis on the CLK line at the near (close to Zynq-7000 AP SoC device) and far ends.

Temperature Sensing Diodes

Note: If unused, the DXP and DXN pins for the temperature sensing interface should be tied to ground.

Trace A

Tx Path: The clock to data skew should be targeted to 2.8 ns to center align the clock to the data for all voltages. This shift must be provided either on the board or by the trace debugger tools. ARM DSTREAM, Lauterbach & Agilent Trace debugger tools support individually adjustable trace clk/data signals.

Trace B

Tx Path: The clock to data skew should be targeted to 2.6 ns to center align the clock to the data for all voltages. This shift must be provided either on the board or by the trace debugger tools. ARM DSTREAM, Lauterbach & Agilent Trace debugger tools support individually adjustable trace clk/data signals.

USB ULPI

PCB and package delay should be kept to 2.0 ns or shorter to meet the 60 MHz operating target. PCB and package delay skew for DATA[7:0], DIR, NXT, and STP should be less than ±100 ps.

RECOMMENDED: It is recommended that the clock trace should always be shorter than the data and control signals to improve hold time.

QSPI

The clock, data, and SS lines are recommended to have matched lengths to facilitate meeting setup and hold times. PCB and package delay skew for QSPI_IO[0:3] and QSPI_SS lines relative to QSPI_SCLK should be less than ±50 ps. Keeping the clock and data lines equal provides greater immunity to undesirable setup and hold time effects. It is highly recommended to perform a signal integrity analysis on the clock line at the near (close to Zynq-7000 AP SoC device) and far ends.
The overall trace delays of the clock and data lines affect the maximum frequency at which the QSPI interface can run.

IMPORTANT: An important rule that must be followed is that the clock-to-out time of the flash device (tckoflash) plus twice the maximum PCB trace length delay (Tpd) must be greater than the maximum hold time requirement of the Zynq-7000 AP SoC device. In other words:

\[
T\text{QSPI} \text {KD} < T\text{ckomin}_{\text{flash}} + 2 \times Tpd \text{ (requirement)}
\]

For example, with a Zynq-7000 AP SoC hold time requirement of 1.3 ns, and a flash clock-to-out of 1.0 ns, the propagation delay of the clock and data lines must be at least 0.15 ns. With a higher hold time requirement, the PCB trace delays will need to increase.

The following table shows minimum trace delays depending on various timing scenarios:

<table>
<thead>
<tr>
<th>TQSPIKD (ns)</th>
<th>Tckominflash (ns)</th>
<th>Minimum Tpd (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>0.0</td>
<td>0.65</td>
</tr>
<tr>
<td>1.3</td>
<td>1.0</td>
<td>0.15</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0</td>
<td>1.50</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Maximum Operating Frequency (Feedback Mode Enabled)

Note: To operate QSPI at the highest possible frequency, feedback mode must be enabled. To enable this mode, MIO pin 8 must be programmed as the feedback output clock and must only be connected to a pull-up/pull-down resistor on the PCB for boot strapping.

As long as the clock and data lines are matched and at least their minimum length per the rule above, the maximum frequency for the QSPI interface is the lesser of:

\[
F_{max1} = \frac{1}{2 \times (T\text{QSPI}K\text{OMAX} + T\text{su}_{\text{flash}})} \quad \text{Equation 5-1}
\]

\[
F_{max2} = \frac{1}{T\text{ckoflash} + T\text{QSPI}DCK + (2 \times Tpd)} \quad \text{Equation 5-2}
\]

\[
F_{max3} = \frac{1}{2 \times (T\text{hold}_{\text{flash}} - T\text{QSPI}K\text{MIN})} \quad \text{Equation 5-3}
\]

For \(F_{max1}\), \(T\text{QSPI}K\text{OMAX}\) and \(T\text{QSPI}DCK\) are the respective clock-to-out and setup times of the Zynq-7000 AP SoC device. For \(F_{max2}\), \(T\text{ckoflash}\) and \(T\text{su}_{\text{flash}}\) are the respective clock-to-out and setup times of the flash device, and \(Tpd\) is the maximum PCB propagation delay.
delay. For Fmax3, Tholdflash is the input hold time of the flash device, and TQSPIKOMIN is the minimum clock-to-out time of the Zynq-7000 device.

Using data from DS191 and a popular flash vendor's data sheet, the effect of trace delay on the maximum frequency can be illustrated:

<table>
<thead>
<tr>
<th>TQSPIKO min (ns)</th>
<th>TQSPIKO max (ns)</th>
<th>TQSPIDCK (ns)</th>
<th>Tckoflash (ns)</th>
<th>Tsuflash (ns)</th>
<th>Tholdflash (ns)</th>
<th>Tpd (ns)</th>
<th>Fmax1 (MHz)</th>
<th>Fmax2 (MHz)</th>
<th>Fmax3 (MHz)</th>
<th>Fmax (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.4</td>
<td>2.0</td>
<td>7.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.175</td>
<td>100</td>
<td>107</td>
<td>166</td>
<td>100</td>
</tr>
<tr>
<td>0.0</td>
<td>3.4</td>
<td>2.0</td>
<td>7.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.35</td>
<td>100</td>
<td>103</td>
<td>166</td>
<td>100</td>
</tr>
<tr>
<td>0.0</td>
<td>3.4</td>
<td>2.0</td>
<td>7.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.525</td>
<td>100</td>
<td>99</td>
<td>166</td>
<td>99</td>
</tr>
<tr>
<td>0.0</td>
<td>3.4</td>
<td>2.0</td>
<td>7.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.70</td>
<td>100</td>
<td>96</td>
<td>166</td>
<td>96</td>
</tr>
<tr>
<td>0.0</td>
<td>3.4</td>
<td>2.0</td>
<td>7.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.875</td>
<td>100</td>
<td>93</td>
<td>166</td>
<td>93</td>
</tr>
<tr>
<td>0.0</td>
<td>3.4</td>
<td>2.0</td>
<td>7.0</td>
<td>2.0</td>
<td>3.0</td>
<td>1.75</td>
<td>100</td>
<td>80</td>
<td>166</td>
<td>80</td>
</tr>
</tbody>
</table>

As can be seen from the table, Fmax3 is not dependent on trace delay as long as the clock and data delays are equal. Fmax3 is only of concern with an unusually high hold time requirement for the flash device. It is recommended to avoid flash devices with hold times greater than 4.0 ns.
Introduction

Package migration across a device family is a common feature among Xilinx devices. The pinout remains consistent, with the biggest difference being more available I/Os in bigger packages. However, a unique case arises when migrating from an XC7Z030-SBG485 device to an XC7Z015-CLG485 device, as there are more significant differences between the devices other than pinout. The designer wishing to migrate between these two devices needs to be aware of these differences.

Differences between XC7Z030-SBG485 and XC7Z015-CLG485 Devices

When migrating from an XC7Z030-SBG485 device to an XC7Z015-CLG485 device, some key differences should be noted in regards to functionality, performance, packaging, transceivers, PCB layout, and software (see Table 6-1).

Table 6-1: Key Differences Between XC7Z030-SBG485 and XC7Z015-CLG485 Devices

<table>
<thead>
<tr>
<th></th>
<th>XC7Z030-SBG485</th>
<th>XC7Z015-CLG485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die/Fabric</td>
<td>Kintex-7</td>
<td>Artix-7</td>
</tr>
<tr>
<td>Package Type</td>
<td>Bare/Flip Chip</td>
<td>Wirebond</td>
</tr>
<tr>
<td>Processor Speed</td>
<td>1 GHz</td>
<td>800 MHz</td>
</tr>
<tr>
<td>Power Supply Tolerance</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>Bank 34, pins H8/R8</td>
<td>VRP/VRN (for DCI)</td>
<td>No DCI</td>
</tr>
<tr>
<td>Bank 35, pins H5/H6</td>
<td>VRP/VRN (for DCI)</td>
<td>No DCI</td>
</tr>
<tr>
<td>Bank 34</td>
<td>HP I/Os</td>
<td>HR I/Os</td>
</tr>
<tr>
<td>Bank 35</td>
<td>HP I/Os</td>
<td>HR I/Os</td>
</tr>
<tr>
<td>Bank 112 (MGT)</td>
<td>GTX</td>
<td>GTP</td>
</tr>
<tr>
<td>Bank 112, pin V7</td>
<td>MGTAVTTRCAL</td>
<td>Not connected</td>
</tr>
</tbody>
</table>
Chapter 6: Migration from XC7Z030-SBG485 to XC7Z015-CLG485 Devices

Functional and Performance Differences

The main functional and performance-related difference between the two devices is the programmable logic upon which each is based. The XC7Z030-SBG485 device utilizes Kintex®-7 logic, the XC7Z015-CLG485 device utilizes Artix®-7 logic. Kintex-7 device performance characteristics are higher than Artix-7 device performance characteristics, as Artix-7 devices are generally geared for lower-cost applications. There will be timing differences as a result, so careful timing analysis will need to be performed. For a general overview of Zynq-7000 devices as they pertain to Kintex-7 and Artix-7 device architectures, refer to the Zynq-7000 All Programmable SoC Overview (DS190). For more specific information regarding Kintex-7 and Artix-7 device architectures, refer to the Kintex-7 FPGAs Data Sheet (DS182), and the Artix-7 FPGAs Data Sheet (DS181).

Package Differences

The second-most important difference is in regards to packaging. The different package types (bare/flip chip versus wirebond) results in flight time differences between same I/Os. For designs targeting maximum performance, PCB and system simulations are crucial to determine if system-wide timing can be met.

There are also a number of pinout differences between the two packages, as noted in Table 6-1. Full package details, including links to the respective package files, can be found in the Zynq-7000 All Programmable SoC Packaging and Pinout Product Specification (UG865).

Transceiver Differences

The XC7Z030-SBG485 device utilizes the higher-performance GTX transceivers, the XC7Z015-CLG485 device utilizes high performance GTP transceivers. GTX and GTP transceivers share many of the same features, but some notable differences are in regards to power supply tolerances, as well as different transceiver software wizards. For more information about GTX and GTP transceivers, please refer to the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476), as well as the 7 Series FPGAs GTP Transceivers User Guide (UG482).

PCB Layout Considerations

The key items to note from a PCB layout perspective are that banks 34 and 35 are high performance I/O banks in the XC7Z030-SBG485 device, so care must be made not to exceed valid voltage levels on those banks. In addition, bank 112 contains two pins that are not connected.

<table>
<thead>
<tr>
<th>Bank 112, pin W3</th>
<th>MGTVCCAUX</th>
<th>Not Connected</th>
<th>Xilinx Design Software</th>
<th>Vivado and ISE</th>
<th>Vivado Only</th>
</tr>
</thead>
</table>

Table 6-1: Key Differences Between XC7Z030-SBG485 and XC7Z015-CLG485 Devices (Cont’d)
connected on the XC7Z015-CLG485 device, but that are connected on the XC7Z030-SBG485 device.

Software Considerations

The Zynq-7000 XC7Z015 device is not supported in the ISE Design Suite and you should not use the Zynq-7000 XC7Z030 device in the SBG485 package in an attempt to migrate to a Zynq-7000 XC7Z015 device in the ISE Design Suite. You must use the Vivado Design Suite to migrate from the Zynq-7000 XC7Z030 device in the SBG485 package to the Zynq-7000 XC7Z015 device.
Appendix A

Additional Resources and Legal Notices

Xilinx Resources

Product Support and Documentation

- For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.
- For continual updates, add the Answer Record to your myAlerts.
- For definitions and terms, see the Xilinx Glossary.

Device User Guides

http://Zynq-7000 AP SoC Product Page

Xilinx Design Tools: Release Notes, Installation, and Licensing

http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/design_tools.html

Xilinx Forums and Wiki Links

- http://forums.xilinx.com
- http://wiki.xilinx.com

Xilinx git Websites

https://github.com/xilinx
Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

References

Zynq-7000 AP SoC Documents

Refer to the following Zynq-7000 AP SoC documents for further reference:

- DS190, Zynq-7000 All Programmable SoC Product Overview
- DS187, Zynq-7000 All Programmable SoC (Z-7010, Z-7015, and Z-7020): AC and DC Switching Characteristics Data Sheet
- DS191, Zynq-7000 All Programmable SoC (Z-7030, Z-7045, and Z-7100): AC and DC Switching Characteristics Data Sheet
- UG865, Zynq-7000 All Programmable SoC Packaging and Pinout Specifications
- UG821, Zynq-7000 All Programmable SoC Software Developers Guide

These user guides and additional relevant information can be found on the Xilinx Zynq-7000 AP SoC product page:

PL Documents – Device and Boards

To learn more about the PL resources, refer to the following 7 Series FPGA User Guides:

- UG471, Xilinx 7 Series FPGA SelectIO Resources User Guide
- UG472, Xilinx 7 Series FPGA Clocking Resources User Guide
- UG473, Xilinx 7 Series FPGA Memory Resources User Guide
- UG474, Xilinx 7 Series FPGA Configurable Logic Block User Guide
- UG476, Xilinx 7 Series FPGA GTX/GTH Transceivers User Guide
- UG482, Xilinx 7 Series FPGA GTP Transceivers User Guide
Appendix A: Additional Resources and Legal Notices

- UG479, Xilinx 7 Series FPGAs DSP48E1 Slice User Guide
- UG480, Xilinx 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User Guide
- UG483, Xilinx 7 Series FPGAs PCB Guide

These user guides and additional relevant information can be found on the Xilinx 7 Series product page:

Advanced eXtensible Interface (AXI) Documents

Refer to UG761, AXI Reference Guide for further reference on the AXI protocol.

Software Documents

UG821, Zynq-7000 All Programmable SoC Software Developers Guide

UG873, Zynq-7000 All Programmable SoC: Concepts, Tools, and Techniques (CTT)

The source drivers for stand alone and FSBL are provided as part of the Xilinx IDE Design Suite Embedded Edition. The Linux drivers are provided via the Xilinx Open Source Wiki at:

http://wiki.xilinx.com

Xilinx Alliance Program partners provide system software solutions for IP, middleware, operation systems, etc. For the latest information refer to the Zynq-7000 landing page at:

git Information

- http://git-scm.com
- http://git-scm.com/documentation
- http://git-scm.com/download

Design Tool Documents

Xilinx Vivado Design Suite

http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/design_tools.html
Appendix A: Additional Resources and Legal Notices

Xilinx ISE Design Suite

Xilinx Embedded Development Kit (EDK)

ChipScope Pro Documentation

http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/design_tools/chipscope_pro.html

Xilinx Problem Solvers

http://www.xilinx.com/support/troubleshoot.htm

Third-Party IP and Standards Documents

To learn about functional details related to vendor IP cores contained in Zynq-7000 devices or related international interface standards, refer the following documents:

Note: ARM documents can be found at: http://infocenter.arm.com/help/index.jsp

- ARM AMBA Level 2 Cache Controller (L2C-310) TRM (also called PL310)
- ARM AMBA Specification Revision 2.0, 1999 (IHI 0011A)
- ARM Architecture Reference Manual (Need to register with ARM)
- ARM Cortex-A Series Programmer's Guide
- ARM Cortex-A9 Technical Reference Manual, Revision r3p0
- ARM Cortex-A9 MPCore Technical Reference Manual, Revision r3p0 (DDI0407F) – includes descriptions for accelerator coherency port (ACP), CPU private timers and watchdog timers (AWDT), event bus, general interrupt controller (GIC), and snooping control unit (SCU)
- ARM Cortex-A9 NEON Media Processing Engine Technical Reference Manual, Revision r3p0
- ARM Cortex-A9 Floating-Point Unit Technical Reference Manual, Revision r3p0
- ARM CoreSight v1.0 Architecture Specification – includes descriptions for ATB Bus, and Authentication
- ARM CoreSight Program Flow Trace Architecture Specification
Appendix A: Additional Resources and Legal Notices

- ARM Debug Interface v5.1 Architecture Specification
- ARM Debug Interface v5.1 Architecture Specification Supplement
- ARM CoreSight Components TRM – includes descriptions for embedded cross trigger (ECT), embedded trace buffer (ETB), instrumentation trace macrocell (ITM), debug access port (DAP), and trace port interface unit (TPIU)
- ARM CoreSight PTM-A9 TRM
- ARM CoreSight Trace Memory Controller Technical Reference Manual
- ARM Generic Interrupt Controller v1.0 Architecture Specification (IHI 0048B)
- ARM Generic Interrupt Controller PL390 Technical Reference Manual (DDI0416B)
- ARM Application Note 239: Example programs for CoreLink DMA Controller DMA-330
- ARM PrimeCell Static Memory Controller (PL350 series) Technical Reference Manual, Revision r2p1, 12 October 2007 (ARM DDI 0380G)
- Cadence, Watchdog Timer (SWDT) Specification
- Universal Serial Bus (USB) Specification, Revision 2.0
- UTMI+ Low Pin Interface (ULPI) Specification, Revision 1.1
- Enhanced Host Controller Interface (EHCI) Specification for USB, Revision 1.0
- SD Association, Part A2 SD Host Controller Standard Specification Ver2.00 Final 070130
- SD Association, Part E1 SDIO Specification Ver2.00 Final 070130
- SD Group, Part 1 Physical Layer Specification Ver2.00 Final 060509

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support...
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

© Copyright 2012–2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.