ALL PROGRAMMABLE

7-Series Architecture Overview

Zynq Vivado 2013.2 Version

This material exempt per Department of Commerce license exception TSU

© Copyright 2013 Xilinx

Objectives

> After completing this module, you will be able to:

- Describe the basic slice resources available in 7-Series FPGAs
- List memory hierarchy and various memory resources available
- Identify the basic I/O resources available in 7-Series FPGAs
- List some of the dedicated hardware features of 7-Series FPGAs
- Explain the available clocking resources and mechanism
- Identify latest members of Virtex-7 device family
- Identify the MMCM, PLL, and clock routing resources included with these families
- Describe the additional dedicated hardware for all the 7-series family members

Outline

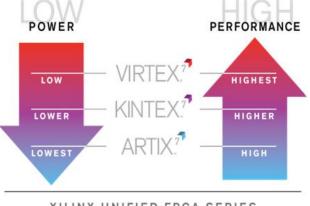
- > Introduction to 7-Series FPGA
- > Logic Resources
- > I/O Resources
- > Memory and DSP48 Resources
- > XADC
- > Clocking Resources
- > Zynq Family
- Summary

Introduction

> All Xilinx FPGAs contain the same basic resources

- Logic Resources
 - Slices (grouped into configurable logic blocks (CLB))
 - Contain combinatorial logic and register resources
 - Memory
 - Multipliers
- Interconnect Resources
 - Programmable interconnect
 - IOBs
 - Interface between the FPGA and the outside world
- Other resources
 - Global clock buffers
 - Boundary scan logic

Through various generations, Xilinx added new architectural resources to target various markets and application areas


7-Series FPGA Families

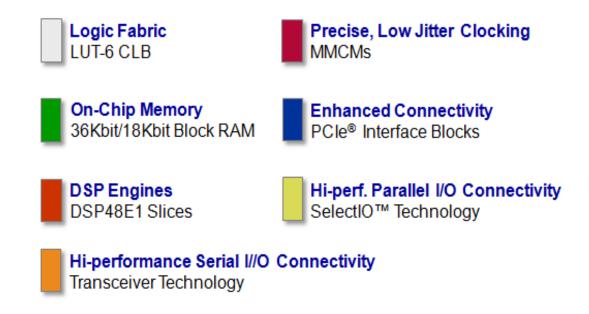
	ARTIX.7	KINTEX."	VIRTEX.7	ZYNQ.
Maximum Capability	Lowest Power and Cost	Industry's Best Price/Performance	Industry's Highest System Performance	Extensible Processing Platform
Logic Cells	20K – 355K	70K-480K	285K – 2,000K	30K – 350K
Block RAM	12 Mb	34 Mb	65 Mb	240KB – 2180KB
DSP Slices	40 – 700	240 – 1,920	700 – 3,960	80 – 900
Peak DSP Perf.	504 GMACS	2,450 GMACs	5,053 GMACS	1080 GMACS
Transceivers	4	32	88	16
Transceiver Performance	3.75Gbps	6.6Gbps and 12.5Gbps	12.5Gbps, 13.1Gbps and 28Gbps	6.6Gbps and 12.5Gbps
Memory Performance	1066Mbps	1866Mbps	1866Mbps	1333Mbps
I/O Pins	450	500	1,200	372
I/O Voltages	3.3V and below	3.3V and below 1.8V and below	3.3V and below 1.8V and below	3.3V and below 1.8V and below

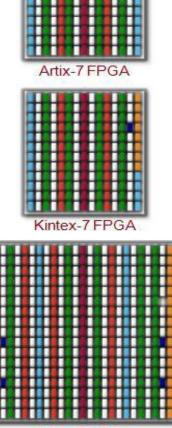
Cost, Power, and Performance

The different families in the 7-series provide solutions to address the different price/performance/power requirements of the FPGA market

- Artix[™]-7 family: Lowest price and power for high volume and consumer applications
 - Battery powered devices, automotive, commercial digital cameras
- Kintex[™]-7 family: Best price/performance
 - Wireless and wired communication, medical, broadcast
- Virtex-7 family: Highest performance and capacity
 - High-end wired communication, test and measurement, advanced RADAR, high-performance computing

XILINX UNIFIED FPGA SERIES

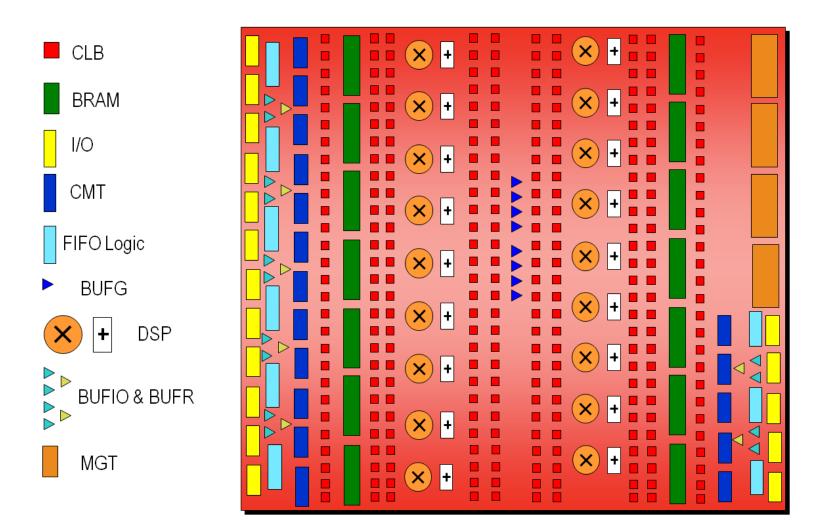

© Copyright 2013 Xilinx



7-Series Architecture Alignment

Common elements enable easy IP reuse for quick design portability across all 7-series families

- Design scalability from low-cost to high-performance
- Expanded eco-system support
- Quickest time to market

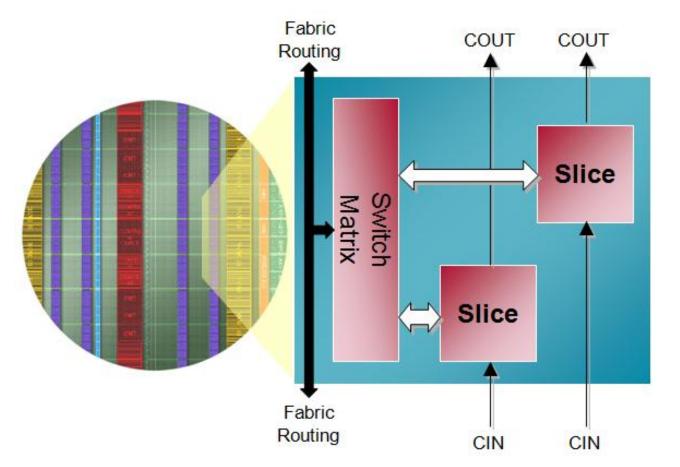

Virtex-7 FPGA

XILINX > ALL PROGRAMMABLE..

Artix-7 Family

	Logio		Logic Blocks Bs)	DSP48E1	Block RAM Blocks ⁽³⁾		Clock Mgmt Tiles	PCle		XADC	Total I/O	Max	
Device	Logic Cells	Slices ⁽¹⁾	Max Distributed RAM (Kb)	Slices ⁽²⁾	18Kb	36Kb	Max (Kb)	(CMTs)	(5)	GTPs	Blocks (6)	Banks ⁽⁷⁾	User I/O ⁽⁸⁾
XC7A20SL	16,000	2,500	208	60	60	30	1,080	3	0	0	1	5	216
XC7A35SL	32,909	5,142	453	120	130	65	2,340	3	0	0	1	5	216
XC7A50SL	52,480	8,200	688	180	190	95	3,420	4	0	0	1	6	300
XC7A75SL	71,642	11,194	974	240	250	125	4,500	4	0	0	1	6	300
XC7A20SLT	16,000	2,500	208	60	60	30	1,080	3	1	4	1	5	216
XC7A35SLT	32,909	5,142	453	120	130	65	2,340	3	1	4	1	5	216
XC7A50SLT	52,480	8,200	688	180	190	95	3,420	4	1	8	1	6	300
XC7A75SLT	71,642	11,194	974	240	250	125	4,500	4	1	8	1	6	300
XC7A100T	101,440	15,850	1,188	240	270	135	4,860	6	1	8	1	6	300
XC7A200T	215,360	33,650	2,888	740	730	365	13,140	10	1	16	1	10	500

Artix-7 FPGA Architecture Overview

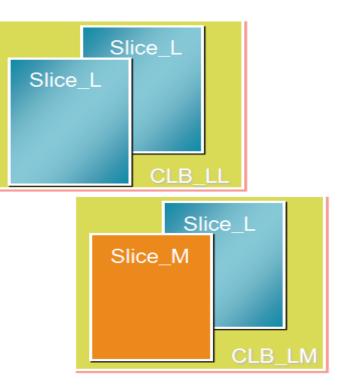

Outline

- Introduction to 7-Series FPGA
- > Logic Resources
- > I/O Resources
- > Memory and DSP48 Resources
- > XADC
- > Clocking Resources
- > Zynq Family
- **>** Summary

Configurable Logic Block (CLB) in 7-Series FPGAs

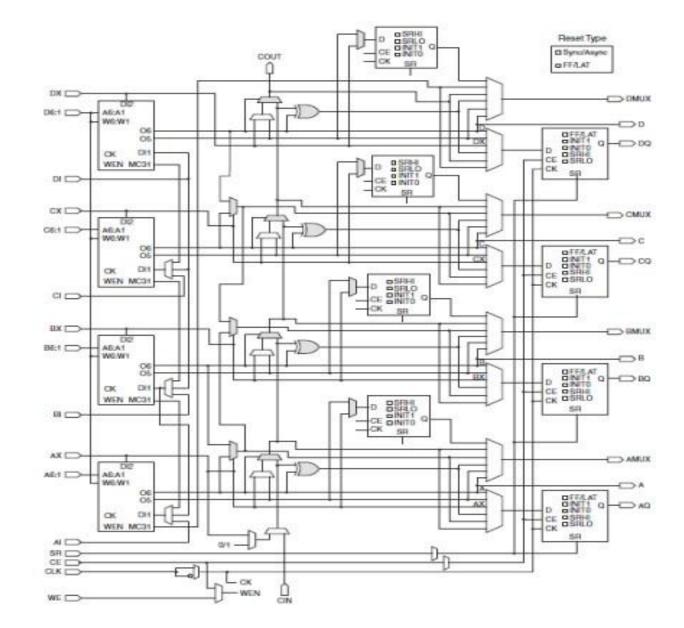
> Primary resource for design

- Combinatorial functions
- Flip-flops
- > CLB contains two slices
- Connected to switch matrix for routing to other FPGA resources
 - Carry chain runs vertically in a column from one slice to the one above

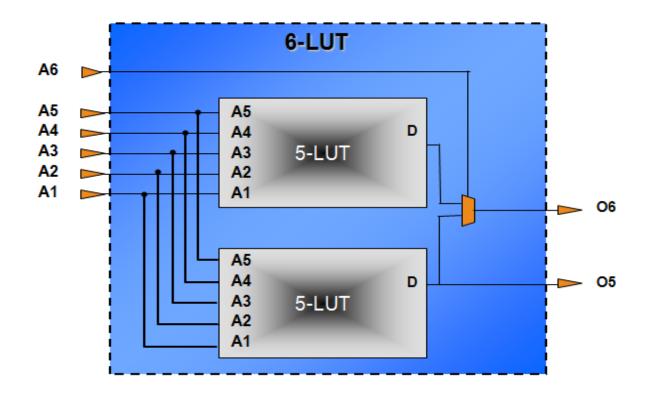


Two Types of Slices

> Two types of slices


- SLICEM: Full slice
 - LUT can be used for logic and memory/SRL
 - Has wide multiplexers and carry chain
- SLICEL: Logic and arithmetic only
 - LUT can only be used for logic (not memory)
 - Has wide multiplexers and carry chain

Slice Resource


- Four six-input Look-Up Tables (LUT)
- > Multiplexers
- Carry chains
- > SRL
 - Cascade path is not shown
- Four flip-flops/latches
 - Four additional flip-flops
- The implementation tool will pack multiple slices in the same CLB if certain rules are followed

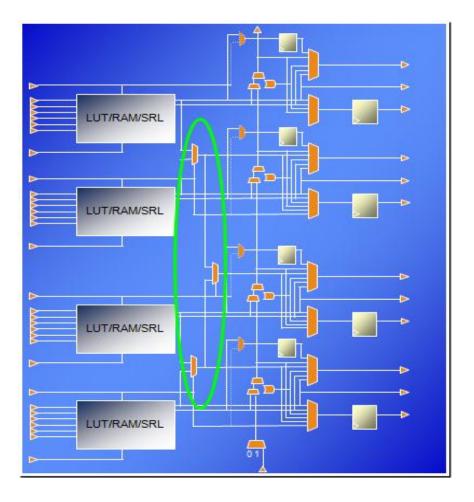
6-Input LUT with Dual Output

LUTs can be two 5-input LUTs with common input

- Minimal speed impact to a 6-input LUT
- One or two outputs
- Any function of six variables or two functions of five variables

Wide Multiplexers

Each F7MUX combines the outputs of two LUTs together

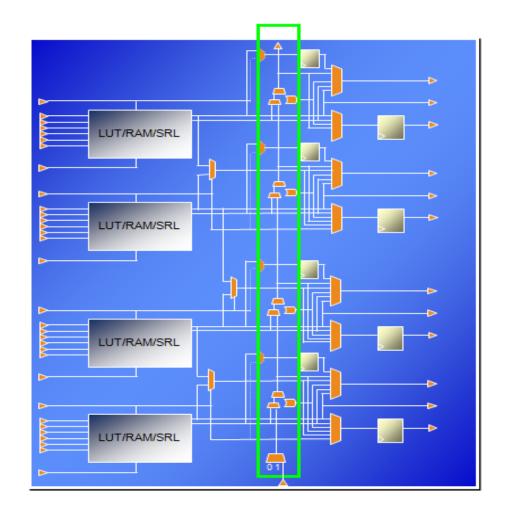

- Can implement an arbitrary 7-input function
- Can implement an 8-1 multiplexer

The F8MUX combines the outputs of the two F7MUXes

- Can implement an arbitrary 8-input function
- Can implement a 16-1 multiplexer

MUX is controlled by the BX/CX/DX slice input

MUX output can drive out combinatorially or to the flip-flop/latch


Carry Chain

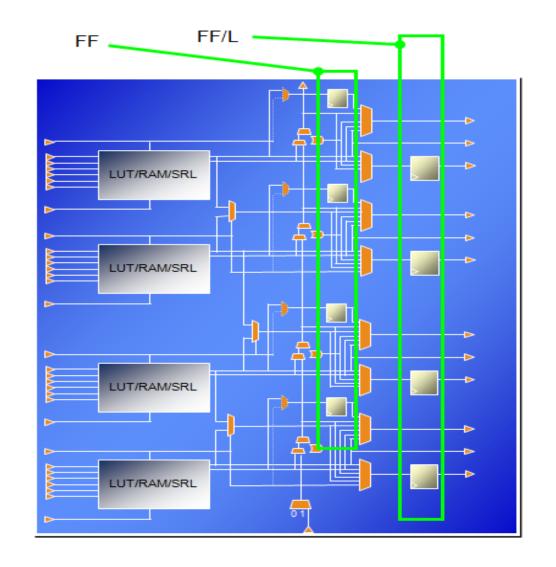
Carry chain can implement fast arithmetic addition and subtraction

- Carry out is propagated vertically through the four LUTs in a slice
- The carry chain propagates from one slice to the slice in the same column in the CLB above

Carry look-ahead

- Combinatorial carry look-ahead over the four LUTs in a slice
- Implements faster carry cascading from slice to slice

Slice Flip-Flops and Flip-Flop/Latches


Each slice has four flip-flop/latches (FF/L)

- Can be configured as either flip-flops or latches
- The D input can come from the O6 LUT output, the carry chain, the wide multiplexer, or the AX/BX/CX/DX slice input

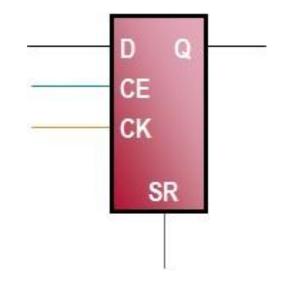
> Each slice also has four flip-flops (FF)

- D input can come from O5 output or the AX/BX/CX/DX input
 - These don't have access to the carry chain, wide multiplexers, or the slice inputs

If any of the FF/L are configured as latches, the four FFs are not available

Slice Flip-Flop Capabilities

> All flip-flops are D type


> All flip-flops have a single clock input (CK)

- Clock can be inverted at the slice boundary

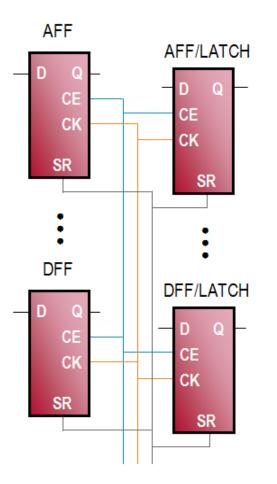
> All flip-flops have an active high chip enable (CE)

> All flip-flops have an active high SR input

- Input can be synchronous or asynchronous as determined by the corresponding configuration bit
- Sets the flip-flop value to a pre-determined state as determined by the corresponding configuration bit

Control Sets

All flip-flops and flip-flop/latches share the same CK, SR, and CE signals


- This is referred to as the "control set" of the flip-flops
- CE and SR are active high
- CK can be inverted at the slice boundary

> If any one flip-flop uses a CE, all others must use the same CE

- CE gates the clock at the slice boundary
- Saves power

> If any one flip-flop uses the SR, all others must use the same SR

The reset value used for each flip-flop is individually set by the SRVAL attribute

SLICEM Used as 32-bit Shift Register

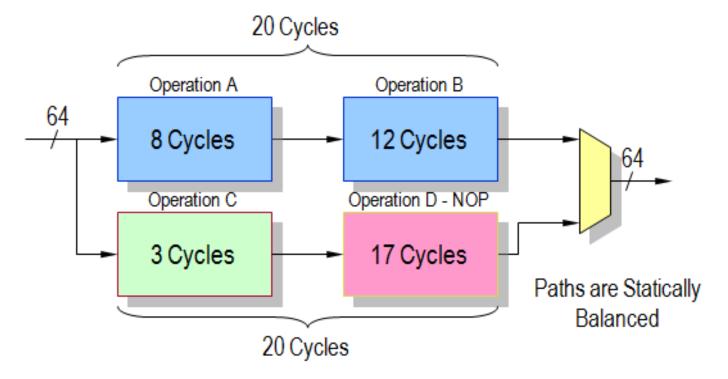
> Versatile SRL-type shift registers

- Variable-length shift register
- Synchronous FIFOs
- Content-Addressable Memory (CAM)
- Pattern generator
- Compensate for delay / latency

> Shift register length is determined by the address

- Constant value giving fixed delay line
- Dynamic addressing for elastic buffer

> Cascadable up to 128x1 shift register in one slice



SRL Configurations in One Slice (4 LUTs)
16x1, 16x2, 16x4, 16x6, 16x8
32x1, 32x2, 32x3, 32x4
64x1, 64x2
96x1
128x1

Shift Register LUT Example

> Operation D - NOP must add 17 pipeline stages of 64 bits each

- 1,088 flip-flops (hence 136 slices) or
- 64 SRLs (hence 16 slices)

SLICEM Used as a Distributed SelectRAM Memory

> Uses the same storage that is used for the look-up table function

> Synchronous write, asynchronous read

- Can be converted to synchronous read using the flip-flops available in the slice

> Various configurations

- Single port
 - One LUT6 = 64x1 or 32x2 RAM
 - Cascadable up to 256x1 RAM
- Dual port (D)
 - 1 read / write port + 1 read-only port
- Simple dual port (SDP)
 - 1 write-only port + 1 read-only port
- Quad-port (Q)
 - 1 read / write port + 3 read-only ports

	Single	Dual	Simple	Quad
	Port	Port	Dual Port	Port
64x2 64x3 64x4 128x1 128x2	32x4 32x6 32x8 64x1 64x2 64x3 64x3 64x4 128x1	32x4D 64x1D 64x2D		32x2 Q 64x1 Q

Each Port Has Independent Address Inputs

Outline

- Introduction to 7-Series FPGA
- > Logic Resources
- > I/O Resources
- > Memory and DSP48 Resources
- > XADC
- > Clocking Resources
- > Zynq FPGA
- Summary

I/O Interface Challenges

> High-speed operation with maintained signal integrity

- Source-synchronous operation (clock forwarding)
- System-synchronous operation (common systems clock)
- Terminate transmission lines to avoid signal reflections

> Drive and receive data on wide parallel buses

- Compensate for bus skew and clock timing errors
- Conversion between serial and parallel data
- Achieve very high bit rate (> 1 Gbps)

> Single Data Rate (SDR) or Double Data Rate (DDR) interfaces

> Interface to many different standards

- Different voltages, drive strengths and protocols

7-Series FPGA I/O

Wide range of voltages

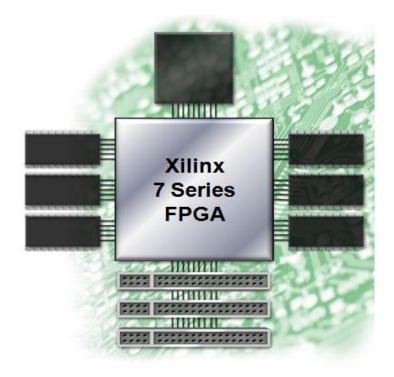
- 1.2V to 3.3V operation

> Many different I/O standards

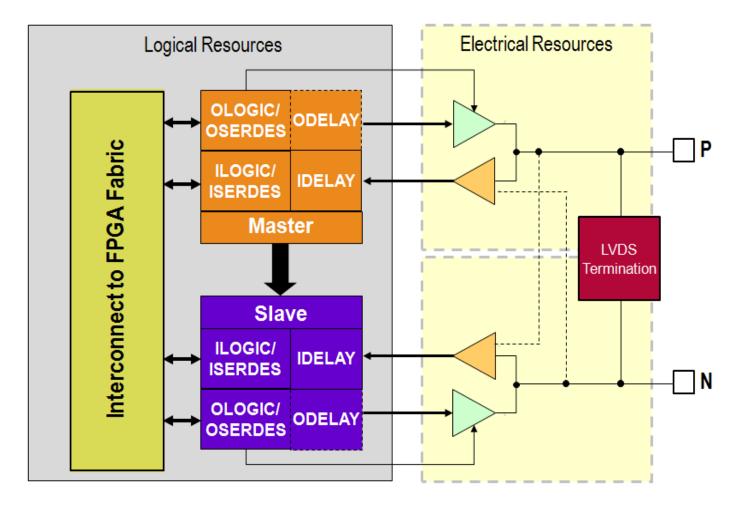
- Single ended and differential
- Referenced inputs
- 3-state support

> Very high performance

- Up to 1600 Mbps LVDS
- Up to 1866 Mbps single-ended for DDR3


> Easy interfacing to standard memories

Hardware support for QDRII+ and DDR3


> Digitally controlled impedance

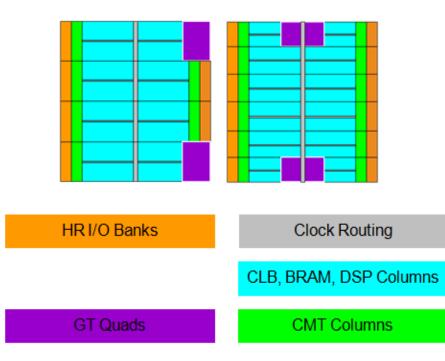
Low power

- Features to reduce power

I/O Block Diagram

I/O Types

> Two different types of I/O in 7-series FPGAs


- High Range (HR)
 - Supports I/O standards with Vcco voltages up to 3.3V
- High Performance (HP)
 - Supports I/O standards with Vcco voltages up to 1.8V only
 - Designed for the highest performance
 - Has ODELAY and DCI capability

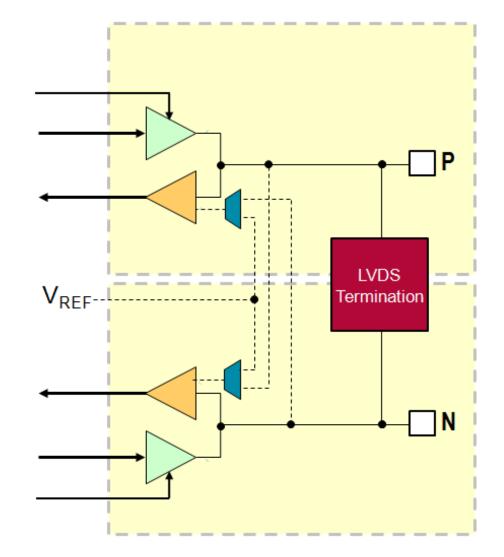
I/O Types	Artix-7 Family	Kintex-7 Family	Virtex-7 Family	Virtex-7 XT/HT Family
High Range	All	Most	Some	
High Performance		Some	Most	All

I/O Columns and Types in Artix-7

Feature	Mid-Range Devices	Larger Devices
CMT Columns	1 + Partial	2
I/O Columns	1 + Partial	2
GP Quads	Partial Shared with I/O	Embedded in Fabric

7-Series Architecture Overview 11-28

© Copyright 2013 Xilinx

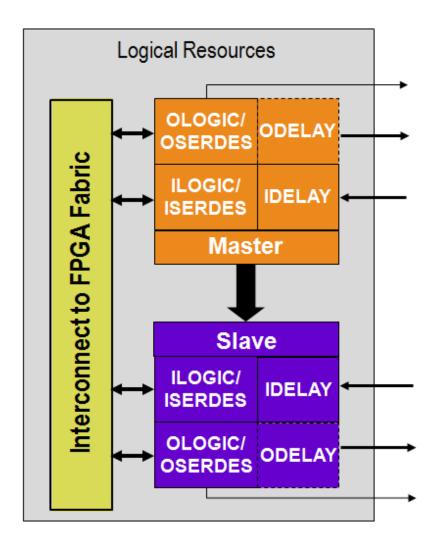

I/O Electrical Resources

> P and N pins can be configured as

- Individual single-ended signals or
- Differential pair

Receiver can be standard CMOS or voltage comparator

- When standard CMOS
 - Logic 0 when "near" ground
 - + Logic 1 when "near" V_{CCO}
- Referenced to V_{REF}
 - Logic 0 when below $\mathrm{V}_{\mathrm{REF}}$
 - Logic 1 when above V_{REF}
- Differential
 - Logic 0 when $V_P < V_N$
 - Logic 1 when $V_P > V_N$


I/O Logical Resources

Two blocks of logic per I/O pair

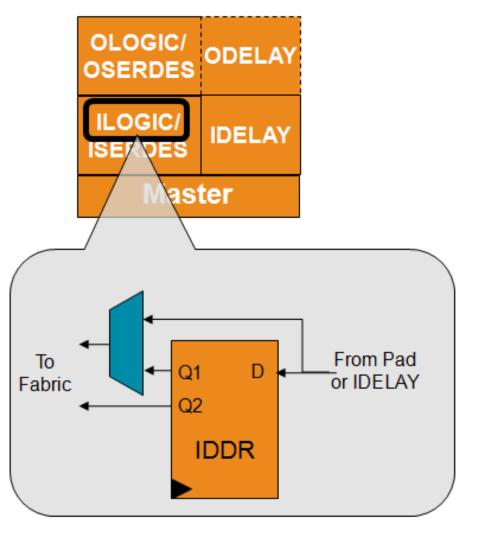
- Master and slave
- Can operate independently or concatenated

Each block contains

- ILOGIC/ISERDES
 - SDR, DDR, or high-speed serial input logic
- OLOGIC/OSERDES
 - SDR, DDR, or high-speed serial output logic
- IDELAY
 - Selectable fine-grained input delay
- ODELAY
 - Selectable fine-grained output delay
 - Only available on High Performance I/O

ILOGIC: Input SDR and DDR Logic

> Two types of ILOGIC blocks


- ILOGICE2 for High Performance banks
- ILOGICE3 for High Range banks
 - Has zero hold delay capability

> ILOGIC inputs come from the input receiver

- Directly or via the IDELAY block

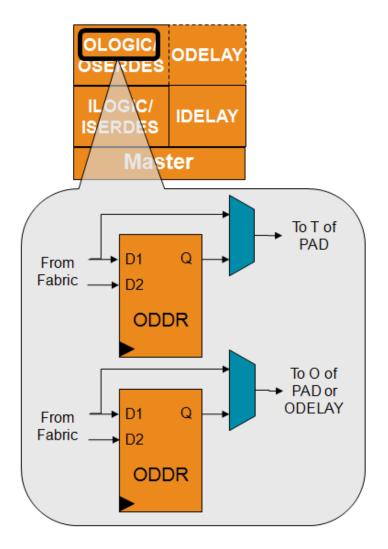
Outputs drive the FPGA fabric

- Directly (no clocked logic) or
- Via the IDDR
 - In SDR mode on rising or falling edge of clock
 - In DDR mode on both edges of clock
 - Can also use two clocks, 180° out of phase

OLOGIC: Output SDR and DDR Logic

OLOGICE2 for HP banks, OLOGICE3 for HR banks

- Output of OLOGIC connects to the output driver directly, or via the ODELAY
 - ODELAY is available in HP banks only


Output is driven directly from the fabric

Directly, through an SDR flip-flop or via the ODDR using both edges of clock

Each OLOGIC block contains two ODDR

- One for controlling the data to the output driver
- One for controlling the 3-state enable
- Both ODDR are driven by same clock and reset

SAME_EDGE or OPPOSITE_EDGE only

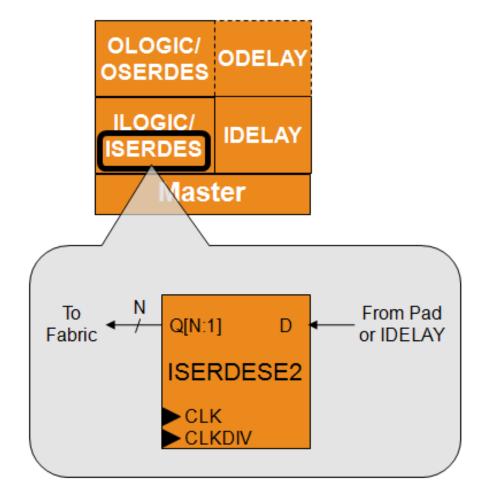
ISERDES: Input Serial-to-Parallel Converter

Clocks in data from input pad or IDELAY

- D is clocked on high speed clock (CLK)
- Can be SDR or DDR

Sends de-serialized data to fabric

- Q is clocked on low speed clock (CLKDIV)
- CLK and CLKDIV must be in phase


De-serializes data

- Single data rate: 2, 3, 4, 5, 6, 7, 8
- Double data rate: 4, 6, 8

Cascade with slave for wider ratios

- Double data rate: 10, 14

Has BITSLIP logic for framing parallel data

OSERDES: Output Parallel-to-Serial Converter

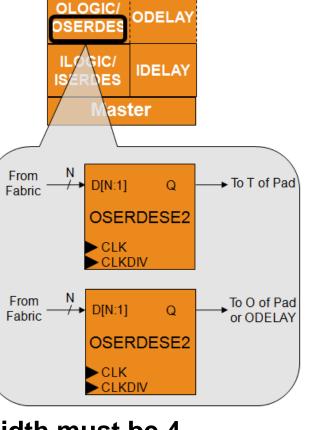
Serializes out data to output pad or ODELAY

- Q is clocked on high speed clock (CLK)
- Can be SDR or DDR

> Parallel data comes from fabric

- D is synchronous to low speed clock (CLKDIV)
- > CLK and CLKDIV must be in phase

Serializes data


- Single data rate: 2, 3, 4, 5, 6, 7, 8
- Double data rate: 4, 6, 8

Cascade with slave for wider ratios

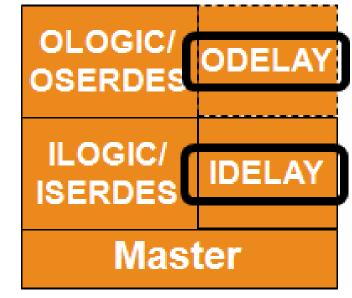
- Double data rate: 10, 14

> When using 3-state serializer, both the data and 3-state width must be 4

- Clocks are shared between both serializers

IDELAY and ODELAY

Separate IDELAY and ODELAY delay lines

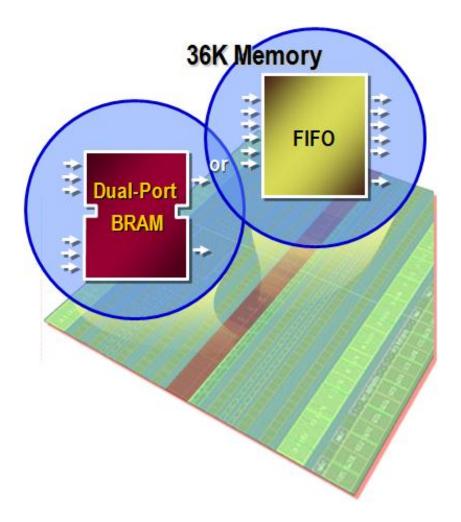

- IDELAY is available in both HR and HP banks
- ODELAY is only available in HP banks

> Delay line elements are calibrated using the IDELAYCTRL cell

- Delay is process, temperature, and voltage independent

IDELAY and ODELAY have almost identical capabilities

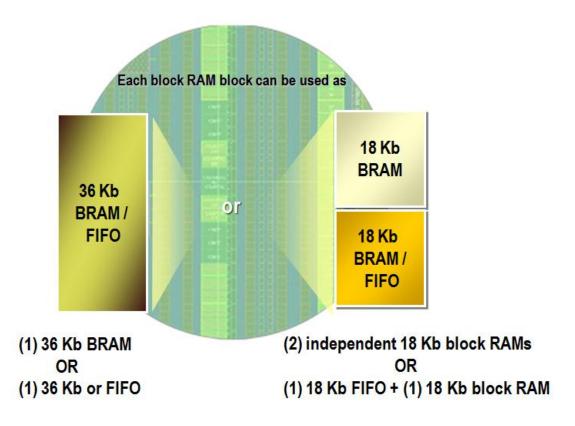
- IDELAY can also be accessed from the fabric
- > Tap counter value can be accessed via FPGA fabric
 - Monitor, increment, decrement, or set the tap value; tap value can be from 0 to 31
- > Reference frequency can be 200 MHz in all speed grades; 300 MHz is also allowed in fastest speed grade
 - Results in 78 ps or 52 ps per tap



Outline

- Introduction to 7-Series FPGA
- > Logic Resources
- > I/O Resources
- > Memory and DSP48 Resources
- > XADC
- > Clocking Resources
- >Zynq FPGA
- Summary

7-Series Block RAM and FIFO


- All members of the 7-series families have the same Block RAM/FIFO
- > Fully synchronous operation
 - All operations are synchronous; all outputs are latched
- > Optional internal pipeline register for higher frequency operation
- > Two independent ports access common data
 - Individual address, clock, write enable, clock enable
 - Independent data widths for each port

7-Series Block RAM and FIFO

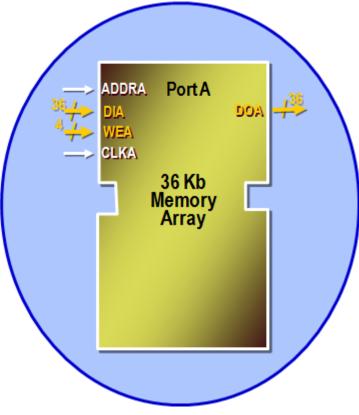
> Multiple configuration options

- True dual-port, simple dual-port, single-port
- Integrated cascade logic
- > Byte-write enable in wider configurations
- Integrated control for fast and efficient FIFOs
- Integrated 64 / 72-bit Hamming error correction
- Separate Vbram supply to ensure block memory functionality in -1L

Single-Port Block RAM

Single read/write port

- Clock: CLKA, Address: ADDRA, Write enable: WEA
- Write data: DIA, Read data: DOA

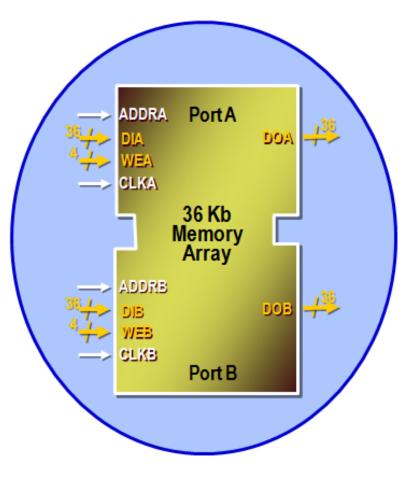

> 36-kbit configurations

- 32k x 1, 16k x 2, 8k x 4, 4k x 9, 2k x 18, 1k x 36
- > 18-kbit configurations
 - 16k x 1, 8k x 2, 4k x 4, 2k x 9, 1k x 18, 512 x 36

> Configurable write mode

- WRITE_FIRST: Data written on DIA is available on DOA
- READ_FIRST: Old contents of RAM at ADDRA is presented on
- NO_CHANGE: The DOA holds its previous value (saves power)

> Optional output register for maximum performance (DOA_REG=1)

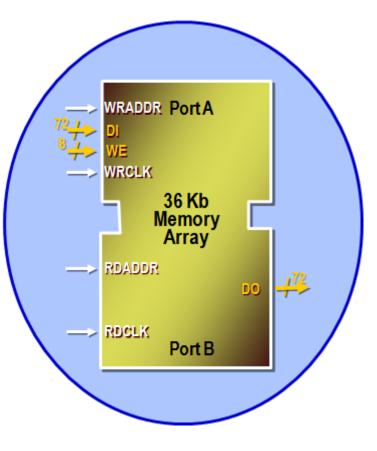

Dual-Port Block RAM

> Two separate read/write ports

- Each port has separate clock, address, data in, data out, write enable...
 - Clocks can be asynchronous to each other
- The two ports can have different widths
 - Same configurations as when single ported
- The two ports can have different write modes

No contention avoidance when both ports access the same address, except

 If clocked by the same clock, and the write port is READ_FIRST, the read port gets the old data

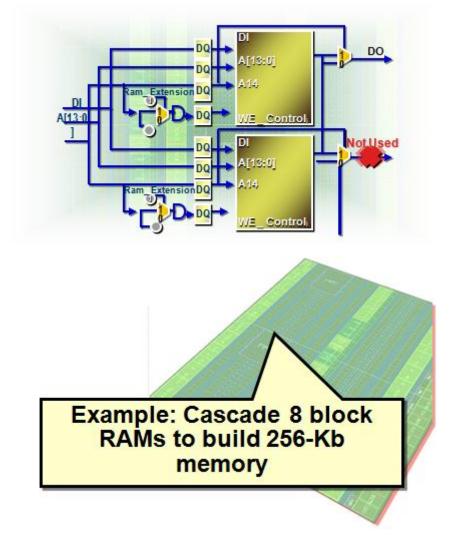


Simple Dual-Port Block RAM

> One read port and one write port

- Each port has separate clock and address
- In 36-kbit configuration, one of the two ports must be 72 bits wide
 - The other port can be x1, x2, x4, x9, x18, x36, or x72
- In 18-kbit configuration, one of the two ports must be 36 bits wide

- The other port can be x1, x2, x4, x9, x18, or x36

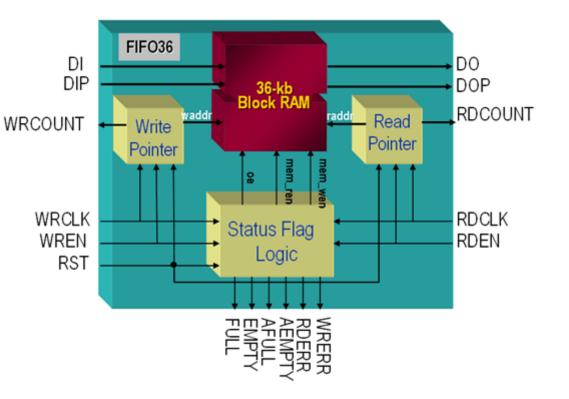

Block RAM Cascading

Built-in cascade logic for 64Kx1

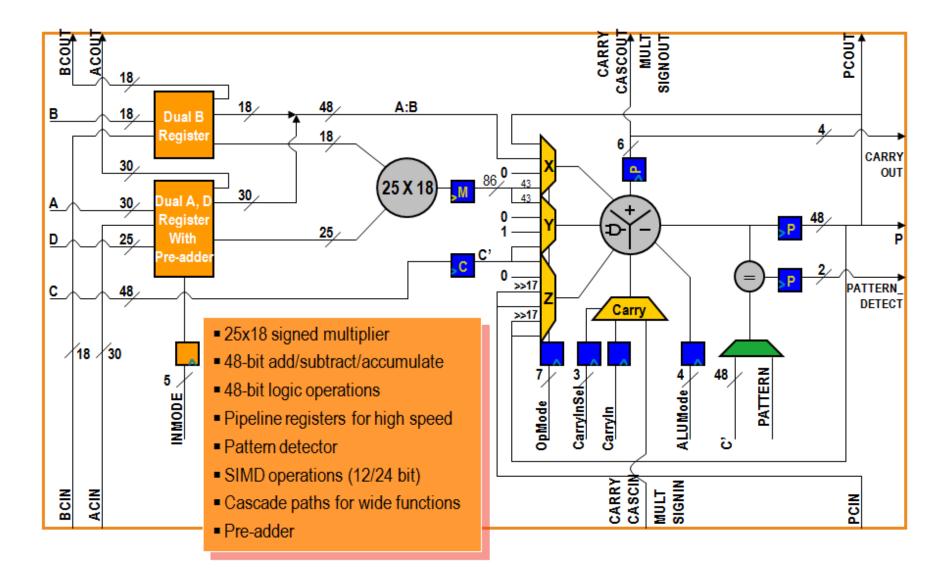
- Cascade *two* vertically adjacent 32Kx1 block RAMs without using external CLB logic or compromising performance
- Saves resources and improves speed of larger memories

Cascade option for larger arrays

- 128Kb, 256Kb, 512Kb, 1 Mb, ...
- Using external CLB logic for depth expansion
 - Not quite as fast as cascaded block RAMs
- Width expansion uses parallel block RAMs

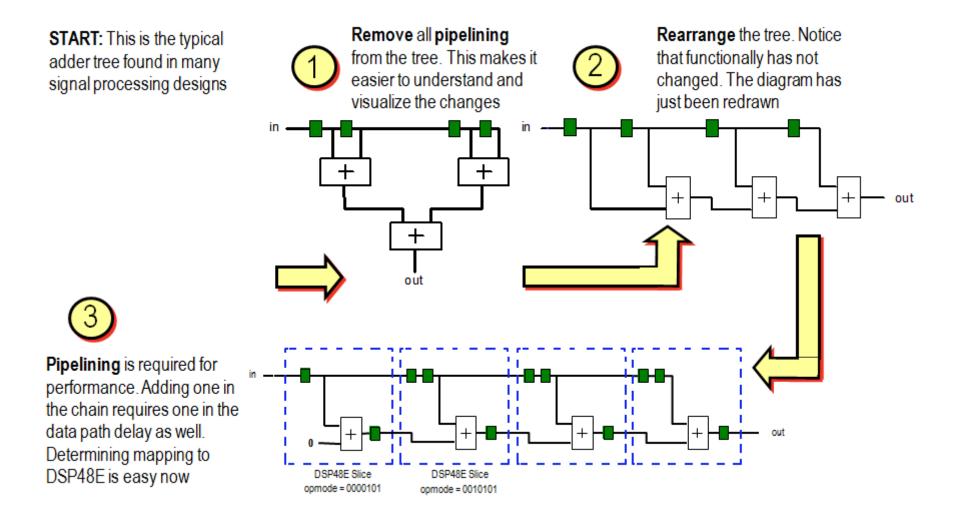

FIFO

> Full featured


- Synchronous or asynchronous read and write clocks
- Four flags
 - Full, empty, programmable almost-full/empty
- Optional first-word-fall-through

FIFO configurations

- Any 36-Kb block RAM: 8Kx4, 4Kx9, 2Kx18, 1Kx36, 512x72
- Any 18-Kb block RAM: 4Kx4, 2Kx9, 1Kx18, 512x36
- Write and read width must be equal
- Can use the integrated error correction when used in the x72 width



7-Series DSP48E1 Slice

XILINX ➤ ALL PROGRAMMABLE.

Using DSP48 for Non-DSP Function

7-Series Architecture Overview 11-45

© Copyright 2013 Xilinx

Outline

- Introduction to 7-Series FPGA
- > Logic Resources
- > I/O Resources
- > Memory and DSP48 Resources
- > XADC
- > Clocking Resources
- >Zynq FPGA
- **>** Summary

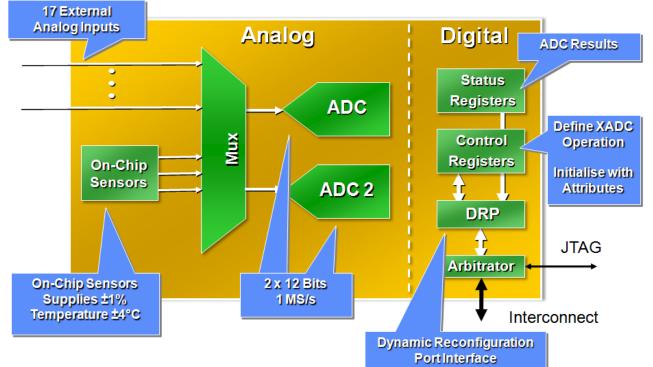
XADC and AMS

> XADC is a high quality and flexible analog interface new to the 7-series

- Dual 12-bit 1Msps ADCs, on-chip sensors, 17 flexible analog inputs, and track & holds with programmable signal conditioning
- 1V input range
- 16-bit resolution conversion
- Built in digital gain and offset calibration

Analog Mixed Signal (AMS)

 Using the FPGA programmable logic to customize the XADC and replace other external analog functions; for example, linearization, calibration, filtering, and DC balancing to improve data conversion resolution


XADC Block Diagram

Fast sampling

- Conversion time of 1 us with support for simultaneous sampling
- Flexible timing modes (self and externally triggered sampling modes)
- Separate track/hold amplifier for each ADC ensures maximum throughput using multiplexed analog input channels

Flexible analog inputs

- Differential analog inputs with high common mode noise rejection
- Support for unipolar, bipolar, and true differential input signal types

XADC's Other Features

Internal and external multiplexing and sampling

- Can sample internal power supplies and temperature
- Multiplexes internal sources and 17 external analog inputs
- Can control an external analog multiplexer to reduce pin count

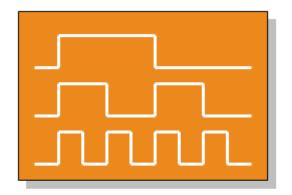
> Flexible triggering

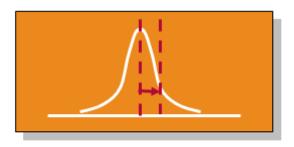
- Conversion data is stored in internal status registers
- Internal control registers control source selection, sampling, and alarms
- Registers can be accessed internally via the dynamic reconfiguration port (DRP)
- Register can be accessed via JTAG
 - Available on power up, before configuration

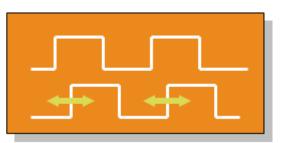
> Operates over a wide temperature range (-40°C to +125°C)

Outline

- Introduction to 7-Series FPGA
- > Logic Resources
- > I/O Resources
- Memory and DSP48 Resources
- > XADC
- > Clocking Resources
- > Zynq FPGA
- Summary


High-Performance Clocking


> Modern applications have complex clocking requirements

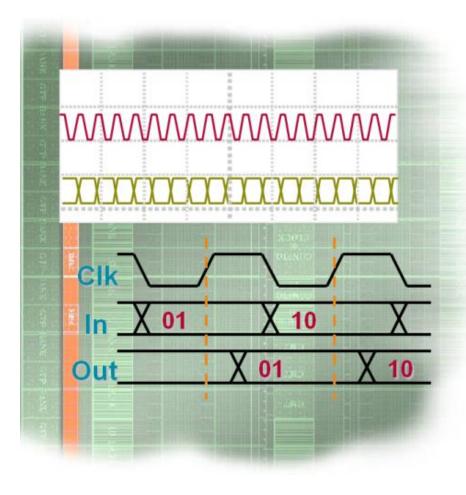

- Extremely high-performance clock signals
- Support for multiple frequency domains across a wide frequency range
- De-skewing of clocks relative to one another
- Low jitter and precise duty cycle to maintain the widest possible data valid window
- Lowest possible system power

Xilinx FPGAs have a rich mixture of clocking resources to accommodate these requirements

- The perfect balance of resources at the right cost

Clock Management

Systems usually require multiple clock frequencies from the same source


 Minimizing the number of oscillators lowers system cost

External clock sources can often be noisy

 Filtering jitter cleans up clocks widening the data valid window

Many circuits need to be clocked at the same time to ensure correct operation

 De-skewing and aligning clocks eliminates holdtime issues and race conditions

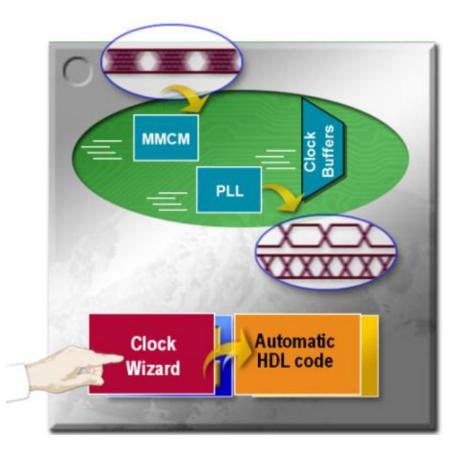
7-Series FPGAs Clock Management

Global clock buffers

- High fanout clock distribution buffer

Low-skew clock distribution

- Regional clock routing


Clock regions

- Each clock region is 50 CLBs high and spans half the device

Clock management tile (CMT)

- One Mixed-Mode Clock Managers (MMCMs) and one Phase Locked Loop (PLL) in each Clock
- Performs frequency synthesis, clock de-skew, and jitterfiltering
- High input frequency range

Simple design creation through the Clocking Wizard

Clock-Capable Inputs

> All synchronous designs need at least one external clock reference

- Many designs require several clock sources
- These sources need to be brought into the FPGA and connected to the internal FPGA clock resources

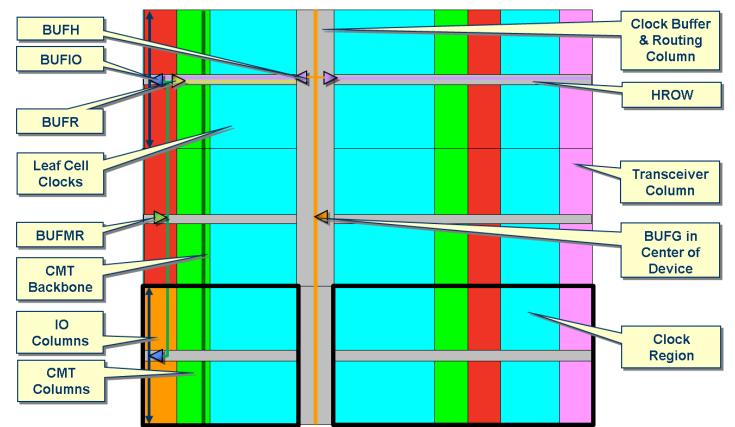
> Every 7-series FPGA has four clock-capable inputs in each bank

- These inputs are regular I/O pins with dedicated connections to internal clock resources
 - When not used as clock inputs, they can be used as a regular I/O pin
- Each clock input can be used as a single-ended clock input, or can be paired with an adjacent pin to form a differential clock input
 - Each bank can therefore have four single-ended or four differential clock inputs
- Two of the four are Multi-Region Clock Capable (MRCC) and the other two are Single Region Clock Capable (SRCC)

Clock Networks

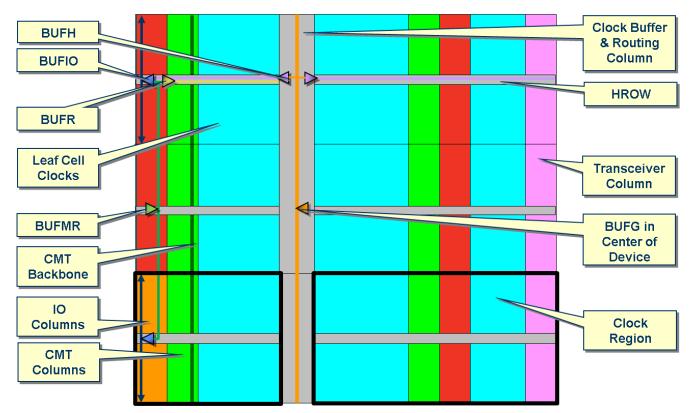
> An FPGA is a regular array of resources

- Many of these resources require clocks for synchronous operations
 - Slice flip-flops, input/output flip-flops, block RAMs, DSP slices
- In order to implement synchronous designs, clocks must be distributed to these clocked elements


> For synchronous operation, clocks must arrive at the clocked elements with

- Extremely low clock skew: Ensures minimal internal hold-time issues
- Low clock jitter: Allows for highest performance
- Duty cycle preservation: Important for Double Data Rate (DDR) applications
- Low insertion latency: Important for synchronous input and output interfaces

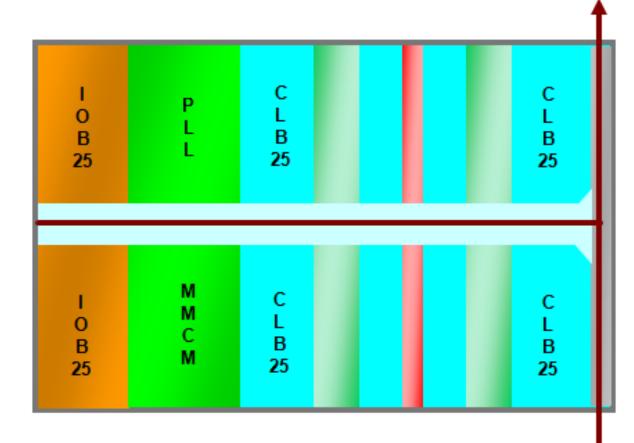
> See next slide for the die


Die View

- The Clock Buffer and Routing Column contains only the global clock buffers and routing
- The MMCMs and PLLs are located in the CMT columns that are immediately adjacent to the IO columns
- The global clock buffers (BUFG) are in the middle of the chip. These drive the vertical spines of the global clock network
- There are also regional clock routing resources driven by BUFRs

Die View

- The horizontal spines of the global clock network run through the center of each clock region. These horizontal spines are driven by BUFH buffers
- Clocks are driven up and down from the center horizontal row (HROW) of each clock region
- The BUFIO are placed within the I/O column, and drive the I/O clock network in that bank
- The BUFMR are dedicated buffers that allow clock inputs to drive the BUFIOs and BUFRs of adjacent regions


7-Series FPGA Clock Regions

> Larger clock region than previous families

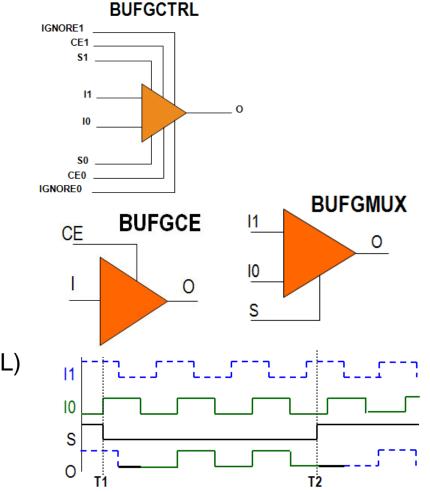
- 50 CLBs high, 50 I/Os high
- Same size as I/O bank
- Half width of device
- 2-24 regions per device for 7-Series

> Resources per clock region

- 12 global clock networks
- Driven by BUFH
- 4 regional clock networks
- Driven by BUFR
- 4 I/O clock networks
- Driven by BUFIO

Global Clock Buffer (BUFGCTRL)

> BUFGCTRLs (or BUFG) reside in the center of the device


BUFGCTRLs can be driven by

- Clock-capable I/O (CCIO) in the same half
- CMT outputs in the same half
- Gigabit transceiver clocks in the same half
- Other BUFG, interconnect, or BUFR

BUFGCTRL outputs drive the vertical global clock spine

BUFGCTRL component implements

- Simple clock buffer (BUFG)
- Clock buffer with clock switching (BUFGMUX or BUFGMUX_CTRL)
- Clock buffer with clock enable (BUFGCE)

Outline

- Introduction to 7-Series FPGA
- > Logic Resources
- > I/O Resources
- Memory and DSP48 Resources
- > XADC
- > Clocking Resources
- > Zynq FPGA
- **>** Summary

Zynq-7000 Family Highlights

Complete ARM®-based processing system

- Application Processor Unit (APU)
 - Dual ARM Cortex[™]-A9 processors
 - Caches and support blocks
- Fully integrated memory controllers
- I/O peripherals

> Tightly integrated programmable logic

- Used to extend the processing system
- Scalable density and performance

Flexible array of I/O

- Wide range of external multi-standard I/O
- High-performance integrated serial transceivers
- Analog-to-digital converter inputs

The PS and the PL

> The Zynq-7000 AP SoC architecture consists of two major sections

- PS: Processing system
 - Dual ARM Cortex-A9 processor based
 - Multiple peripherals
 - Hard silicon core
- PL: Programmable logic
 - Shares the same 7-series programmable logic as
 - Artix[™]-based devices: Z-7010 and Z-7020 (high-range I/O banks only)
 - Kintex[™]-based devices: Z-7030 and Z-7045 (mix of high-range and high-performance I/O banks)

Outline

- Introduction to 7-Series FPGA
- > Logic Resources
- > I/O Resources
- > Memory and DSP48 Resources
- > Clocking Resources
- > Zynq FPGA
- **>** Summary

Summary

> The 7-series FPGA slices contain four 6-input LUTs, eight registers, and carry logic

- LUTs can perform any combinatorial function of up to six inputs
- LUTs are connected with dedicated multiplexers and carry logic
- Some LUTs can be configured as shift registers or memories
- Slices also contain carry logic and the MUXF7 and MUXF8 multiplexers
- The MUXF7 multiplexers combine LUT outputs to create 7-input functions or 8-input multiplexers
- The MUXF8 multiplexers combine the MUXF7 outputs to create 8-input functions or 16-input multiplexers
- The carry logic can be used to implement fast addition, subtraction, and comparison operations
- > The 7-series FPGA IOBs contain DDR registers as well as SERDES resources
- > The SelectIO[™] interfaces enable direct connection to multiple I/O standards

Summary

- > The 7-series FPGA includes dedicated block RAM and DSP slice resources
- The 7-series FPGAs includes dedicated MMCMs, PLLs, and routing resources to improve your system clock performance and generation capability
- > The 7-series FPGAs include other dedicated hardware such as XADC
- The Zynq-7000 processing platform is a system on a chip (SoC) processor with embedded programmable logic fabric of either Artix or Kintex 7-series FPGA