
Summary
Multi-standard software defined radio systems employ arbitrary resampling filters to support a
variety of sample rates. This application note shows the implementation of an arbitrary resampler
on a Xilinx® Versal® AI Core device where the controller is in the programmable logic, and the
heavy-lifting compute is mapped to the AI Engine. Integration and testing of such a
heterogeneous system is simplified by the Xilinx Vitis™ software, which abstracts the processing
units as kernels interconnected by AXI buses.

Download the reference design files for this application note from the Xilinx website. For detailed
information about the design files, see Reference Design.

Introduction
Modern digital signal processing systems often support multiple communication protocols with
various sample rates. However, in the analog front-end, most digital-to-analog (DAC) and analog-
to-digital (ADC) converters only work at fixed sample rates. The following figure shows the block
diagram of a typical software-defined radio system where a pair of arbitrary resampling filters
(ARFs), one in the TX chain and the other in the RX, are employed to support various sample
conversion ratios, which can be any real number within a certain range. The output sample rate
of an ARF is refined to a small set of fixed data rates that can be efficiently handled by the digital
up-conversion (DUC) and down-conversion (DDC) filters. Besides static sample rate conversion,
ARFs are widely used for sampling clock error compensation without incurring a high phase
noise.

Figure 1: Multi-Standard Software-Defined Ratio

Multi-
Standard
Baseband

TX Arbitrary
Resampling
Filter (ARF)

Variety of Nominal
Sample Rates

Fixed Ratio
DUC Filter

DACFixed
Sample Rate

Payload
Data

Analog Signal

Sampling Clock
Adjustments

Fixed Set of
Sample Rates

~
Local OsillatorRX Arbitrary

Resampling
Filter (ARF)

Variety of Nominal
Sample Rates

Fixed Ratio
DDC Filter

Fixed Set of
Sample Rates ADC

Fixed
Sample Rate

PLL

X26163-012522

Application Note: Versal AI Core Devices

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022

Xilinx is creating an environment where employees, customers, and partners feel welcome and included. To that end, we’re removing non-
inclusive language from our products and related collateral. We’ve launched an internal initiative to remove language that could exclude people
or reinforce historical biases, including terms embedded in our software and IPs. You may still find examples of non-inclusive language in our
older products as we work to make these changes and align with evolving industry standards. Follow this link for more information.

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 1

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=c54ae7ff-73c1-45d9-a918-93965ad3df32;d=xapp1373-arf-design.zip
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf
https://www.xilinx.com

The desirable features of the ARF come from its ability to handle dynamic timing offsets of
output samples. In other words, the filter coefficients are computed in real-time for given timing
offsets rather than in constants. This adds extra complexity to the ARF compared to normal
filters. One strategy to lower the computational cost is to place ARFs as close to the baseband as
possible, thus reducing the sample rate.

Several options for the ARF implementation in FPGAs have been discussed in Options for
Arbitrary Resamplers in FPGA-Based Modulators [1]. Xilinx Versal AI Core devices offload the
compute intensive part of the filter using AI Engine, while leaving the controller in the
programmable logic (PL) for maximum flexibility (see Xilinx AI Engine and Their Applications
(WP506)). The design of such a heterogeneous system is simplified by the Vitis software, which
abstracts the design components as kernels interconnected by AXI buses. This application note
provides an example of the design methodology described in Versal ACAP System and Solution
Planning Methodology Guide (UG1504).

Features
An arbitrary resampling filter is implemented on Xilinx AI Core devices with the following
features:

• High performance with 16 taps and a 256x prestored filter coefficient look-up table

• Small footprint with three AI Engines packed in a 3x1 array supporting 250–350 MSPS input
sample rates and a fixed output data rate at 500 MSPS synchronous to the output clock

• Sample-by-sample phase adjustment at a refined resolution of 1 ppb

• Deterministic output latency of 1 μs (exactly 500 clock cycles in the output clock domain)

• User-friendly FIFO-like input data and control interfaces

• Fully synchronous output interface with a solid-High valid signal and FIFO underflow
flags

• Generic Makefile and Tcl scripts reusable by new designs with minor modification

Arbitrary Resampling Filter
Consider the signal waveform shown in Figure 2 where input samples are evenly distributed at an
interval T. One desirable output sample is located between xn-3 and xn-2 with a timing offset u,
which can be any real number between 0 and 1. For all finite impulse response (FIR) filters, the
output can be written as a linear combination of the input samples as:

Equation 1: FIR Output Linear Combination of the Input Sample

where L is the number of taps and {ck} is the set of coefficients. In the case of ARF, to account for
dynamic timing offsets of output samples, ck becomes a function of the timing offset u:

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 2

https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp506-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1504-acap-system-solution-planning-methodology.pdf
https://www.xilinx.com

where f(·) generalizes the discrete coefficients of a low-pass filter to a continuous function in the
domain of real numbers. One method of implementing the continuous function f(·) is to prestore
an array {Fk} in a memory where

Then, approximate ck(u) by a linear interpolation of two nearest prestored values

Equation 2: Linear Interpolation of Two Nearest Prestored Values

where [x] is the floor function that gives the largest integer less than or equal to x and

{Fk} and {Gk} can be implemented by two look-up tables addressed by s. The example in the
following figure has L = 6 and P = 4.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 3

https://www.xilinx.com

Figure 2: Arbitrary Resampling Filter (L = 6, P = 4)

Input Sample Interval =
2N

Desirable Output
Sample Location

Time offset = u

Xn-5

Xn-4

Xn-3

Xn-2

Xn-1
Xn

C5

C4

C3
C2

C1

C0

Signal Waveform

Filter Coefficients

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P

X26164-012522

For an ARF with a maximum interpolation ratio K, at most ceil(K) new output samples can be
computed from one input. The following figure shows the case when K = 2 and either one or two
outputs are computed from every new input sample.

Figure 3: Number of Outputs for Interpolation Ratio up to K = 2

Input Interval T

Output Interval
= 2/3 T

Output Interval
= 1/2 T

2 Output in the Interval

Output Interval
= 2/3 T

Output Interval
= 2/3 T

1 Output in the Interval
X26165-012522

The complexity of an ARF is dominated by the computation of Equation 1 and Equation 2. The
former needs two L real-to-real multiplications for each output sample, and the latter needs an
additional L real-to-real multiplications. Because the output sample rate is K times that of input,
the total number of real-to-real multiplications is 3·L·K·Input_Sample_Rate.

This gives an estimate for the minimum number of AI Engines required by the ARF.

Design Specifications
The ARF should meet the specifications shown in the following table. The input and output
sample rates imply the fractional interpolation ratio can be any real number between 1.4286 and
2.0. There can be up to K = 2 samples computed from every new input.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 4

https://www.xilinx.com

Table 1: Arbitrary Resampling Filter Design Specification

Parameter Value
Range of input sample rate 250–350 MSPS

Output sample rate Fixed at 500 MSPS and synchronous to the output clock

Interpolation ratio adjustment step 1/230

Number of taps (L) 16

Input/output data format 16-bit I + 16-bit Q

Filter coefficient bitwidth 16-bit

First-in-first-out latency Fixed at 1 μs (exactly 500 clock cycles in the output clock
domain)

The ARF input sample rate is nominal and does not necessarily match the clock frequency of PL
logic. Many baseband units process data in bursts, leading to a large fluctuation in the
instantaneous input sample rate. Nevertheless, the ARF output should be a continuous data
stream, synchronous to the output clock.

Design Planning
According to the equation 3·L·K·Input_Sample_Rate, the number of multiplications required
to meet the specifications in Table 1 is 3 x 16 taps x 350 MSPS x 2.0 = 33.6G MACs, which
exceeds 32G MAC capability of one AI Engine running at 1 GHz. It means that at least two AI
Engines are required, for Equation 1 and Equation 2, respectively. Another observation is that the
implementation of Equation 2 involves large look-up tables {Fk} and {Gk}, in which all 16
coefficients for one output sample should be read out simultaneously. However, the vectorized
implementation of Equation 1 needs the coefficients of four output samples to be interleaved for
parallel computation. One more AI Engine should be inserted to interleave the coefficients.

Figure 3 shows the mapping of ARF to the Versal AI Core device. The AI Engines implementing
Equation 1 and Equation 2 are labeled FILT and INTP, respectively. The third AI Engine INLV is for
coefficient interleaving. The number of output samples computed from every input is fixed to K =
2 in AI Engine, and the OutIF module in the PL removes the invalid data according to a flag
generated by the CTRL block, which also computes the phase information {s, α} for coefficient
interpolation.

The input and output interfaces of AI Engine strictly follow the AXI protocol where the Ready
and Valid signals might go Low at any time, creating idle cycles. The CTRL module in the PL
offers a simple FIFO-like interface for inputs, and the output FIFO removes all the idle cycles to
form a continuous data stream in the output clock domain. The AI Engine output sample rate
must be K = 2 times that of the input to meet the throughput requirement, so the output AXI bus
is 64 bits while the input is 32 bits. For a 350 MSPS input sample rate, a clock of 375 MHz is
selected to ensure enough throughput despite the idle cycles. Also, the input phase information
might change instantaneously with the data, and {s, α} must be computed on the fly for every
input in the PL.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 5

https://www.xilinx.com

Figure 4: Partitioning of Arbitrary Fractional SRC Filter onto Versal Device

INTP

INLV

FILT

LU
T

F
LU

T
G

co
ef

_e

co
ef

_i
nl

v

co
ef

_e
In

 F
IF

O

co
ef

_o
co

ef
_o

co
ef

_i
nl

v

DMA

AXI
SW

SHIM
32 32 64

CTRL FIFO OutIF
64

FIFO
30

Phase_Stp 32

Input_Data
250 –

MSPS

Output_Data
500 MSPS

PL FCLK=375 MHz

PL FCLK
= 500 MHz

32

AI Engine

Programmable Logic

AXI
SWO

vl
p_

Re
se

t

X26167-012522

The input delays of every AI Engine kernel should be carefully balanced to avoid memory stalls.
For example, the following figure shows the coefficients and data inputs to the FILT kernel have a
large difference in latency, leading to memory stalls and throughput degradation. To solve this
problem, a direct memory access (DMA) FIFO is constructed inside the AI Engine array to absorb
the delay differences.

Figure 5: Balance FILT Input Delays with DMA FIFO

INTP_IN(stream)

INLV_IN (window)

FILT_COEF_IN (window)

Delay difference to be
absorbed by DMA FIFO in AIE

FILT_DATA_IN(stream)

FILT_DATA (stream)
(Aligned with COEF)

{s, �}

{xk}

ARF Output (stream)
Total Latency < 1 µs

{ck}

{ck}

{xk}

{yk}
X26168-012522

It takes the FILT kernel one clock cycle to compute one output sample, so the peak sample rate
can be up to 1 GSPS. Because the target throughput is only 700 MSPS, a margin of 30% can be
traded for latency. Figure 5 shows the total AI Engine processing delay is slightly more than twice
that of the time to process one window of data. A window of 128 samples translates into 128 x
1/375 = 340 ns latency for the INTP kernel, plus another 340 ns for INLV, and 170 ns for FILT.
The total latency is estimated to be 850 ns, leaving 150 ns margin in the 1 μs budget to fill up the
output FIFO before the reading starts. The FIFO should be deep enough to accept all prefilled
data with some margin to prevent FIFO underflow and overflow when the output is active.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 6

https://www.xilinx.com

Heterogeneous System Design Methodology
The design methodology described in Versal ACAP System and Solution Planning Methodology
Guide (UG1504) enables various engineering teams to work on the same design in parallel. The
Vitis software abstracts the functional blocks as black boxes, namely kernels, whose interfaces
are no more than several AXI buses. Using the bit-true model programmed in MATLAB® or C
language, you can precisely determine the behaviors of all the kernels and store the expected
data on the AXI buses into text files. This approach effectively decouples the development of AI
Engine and RTL.

Figure 6: Heterogeneous Design Development Flow

Bit-true
Model

AI Engine
Design

Test
Bench

RTL Kernel 1

RTL Kernel 2

RTL Kernel 3

Test
Vectors

Test
Vectors

AI Engine Simulator

Vivado

Arm C

VCK190
Platform

AI
Engine
Binary

PL Kernel 1

PL Kernel 2

PL Kernel 3

V++
System

Algorithm
Engineer

AI Engine
Developer

RTL
Developer

Software
Engineer

System
Integration
Engineer

C / MATLAB

X26169-012522

From the perspective of AI Engine developers, the whole PL design is reduced to a few input and
output AXI streams with the clock frequencies and bus bit widths specified in the AI Engine test
bench. Using this information, the AI Engine Simulator drives the input and saves the output
accordingly. The AI Engine output data must bit-true match the reference test vectors, and the
timestamps saved along with the data give an estimate of the throughput. It is highly
recommended to have the AI Engine design fully validated in the AI Engine only simulation
environment before integrating into larger systems.

Similarly, from the RTL engineers’ point of view, AI Engine kernels are modeled as AXI buses
driven or monitored by the RTL test bench. The following figure shows one example of a pure
RTL verification environment where two RTL kernels are under test. Many corner cases and
extreme conditions are difficult to create with actual AI Engine kernels, and a pure RTL
environment is useful to improve the robustness of the RTL design under special circumstances.
Also, the simulation of pure RTL is much faster than AI Engine+PL+processing system (PS) co-
simulation, leading to shorter turnaround time at the initial stage of development.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 7

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1504-acap-system-solution-planning-methodology.pdf
https://www.xilinx.com

Figure 7: RTL Test Environment

AXI4-Lite

RTL Kernel 1

AXI
Driver

AXI
MonitorAXI

DriverAXI
Driver

AXI
MonitorAXI

Monitor

RTL Kernel 2

AXI
Driver

AXI
MonitorAXI

DriverAXI
Driver

AXI
MonitorAXI

Monitor

Emulate Arm Processor

Emulate
AI Engine

Kernels

Test
VectorsTest

Vectors
Input
Test

Vectors

Test
VectorsTest

Vectors
Ref
Test

Vectors

AXI4-Lite

Test
VectorsTest

Vectors
Input
Test

Vectors

Test
VectorsTest

Vectors
Ref
Test

Vectors

Config Test
Vectors

Config Test
Vectors

Devices under Test

X26170-012522

After AI Engine and RTL kernels are independently developed, all the components can be
packaged as kernels with only AXI buses for input and output. The Xilinx Vitis compiler is such a
productive tool for integration that it only needs the declaration of kernels and a description
about the sources and destinations of every AXI bus to automate the connection.

The AI Engine+PL+PS co-simulation should be performed on the integrated design, and the
waveform view makes the debug process familiar to traditional RTL engineers. The C program
running on the processor controls the test flow, reads back the test results collected by PL
kernels, and prints the results via a COM port. During hardware test where the signal waveforms
are not available, the printed information becomes the most convenient way to confirm that the
design is working correctly.

Design Validation
The heterogeneous ARF design is validated in the Xilinx VC1902 device on a VCK190 evaluation
board. The AI Engine and PL portions of the ARF design are packaged as kernels, as is the tester,
which drives the input ports of the device under test (DUT) using a prestored stimulus and
monitors the output AXI bus with the reference test vector. Throughput and latency are
measured by the PL tester and recorded in a set of registers accessible by the processor via the
AXI4-Lite interface. At the end of the test, the results are summarized and printed via a COM
port.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 8

https://www.xilinx.com

Figure 8: ARF Design Validation Environment

ARF AI Engine
Kernel

Strict AXI

Relaxed AXI

Arm
Processor

AXI4-Lite
Register Interface

 @ 100 MHz

ARF
PL Kernel

ARF
PL Tester

Device under Test

Xilinx VC1902

X26171-012522

All the kernels can only have AXI interfaces, however, when both source and destination of an
AXI bus are PL kernels, users can customize the signal definitions. Besides the AXI buses
connected with AI Engine, the ARF PL kernel has the following signals mapped to the AXI
interfaces with custom logic.

Table 2: ARF PL Kernel Signals Mapped to AXI Interfaces

AXI Bus Direction Signal Name Mapping to AXI Signal
Input (375 MHz) afsrc_in_vld T_VALID

afsrc_in_rdy T_READY

afsrc_in_soft_reset T_DATA[63]

afsrc_in_stp [29:0] T_DATA[61:32]

afsrc_in_dat [31:0] T_DATA[31:0]

Output (500 MHz) afsrc_out_flags [1:0] T_USER[1:0]

afsrc_out_rdy T_READY

afsrc_out_vld T_VALID

afsrc_out_dat[31:0] T_DATA[31:0]

Some details are explained in the following:

• A soft reset is mapped to the most significant bit of the input data bus. It should be asserted
before the valid data to do the following:

○ Reset the phase accumulation registers in PL

○ Reset the output FIFOs in PL

○ Clear the overlap memory in AI Engine

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 9

https://www.xilinx.com

• The AXI protocol requires the data transmission to pause immediately after the Ready signal
goes Low. In the customized AXI interface, the protocol is relaxed to that of a FIFO which
honors all write operations until the buffer is full. The backpressure is signaled by the
programmable full signal asserted when less than 16 samples can be written to the FIFO.
This allows the custom logic to flush out the data in a pipeline up to 15 stages.

• The output Ready signal serves as a timing reference for the ARF to start output exactly 500
clock cycles after its assertion. This is realized by a carefully controlled output FIFO read
signal.

• The empty signals of the ARF FIFOs are mapped to T_USER for error detection. When the
ARF output is active, a FIFO empty event indicates the output data could be corrupted.

The ARF tester kernel collects the test results to be accessed by the processor via a register map
shown in the following figure. There are also fields controlling the test process. Every iteration in
the test is 8192 input samples at 350 MSPS, and a maximum of (232 – 1) iterations can last for
8192 x (232 – 1) x 1/350 MHz = 14 hours.

Figure 9: ARF Tester Kernel Register Map

15 031 16

Reserved
0x0

On/
Off

Test Iteration Counter [31:0]

Number of Mismatches [15:0] Number of Monitored Words [15:0]

Number of Mismatches [47:16]

0x20

0x24

0x28

0x2C

Number of Monitored Words [47:16]0x30

0x34

RSVDoneRSV

Reserved

0x38

Number of Idle Cycles [15:0] Latency [15:0]0x3C

Errors[1:0]

X26172-012522

A floating-point MATLAB reference model is constructed to ensure the algorithm achieves
satisfactory performance. Then a bit-true MATLAB model is developed, and the quantization
noise is measured by comparing the output with that of the floating-point model. The following
figure is a visual comparison of the input waveform, floating-point resampler output, and bit-true
model. They match with each other very well, which suggests a high accuracy. The measured
signal-to-quantization-noise ratio (SQNR) is 87 dBc for this test case.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 10

https://www.xilinx.com

Figure 10: MATLAB Model Simulation Results

The test vectors generated by the MATLAB scripts are used for AI Engine simulation and
hardware testing. A fractional ratio of 5333/7993 is selected for testing purposes, where 5333
and 7993 are both prime numbers. The input test vector is a repetition of a 5333-sample
waveform until the length of AI Engine simulation is reached. The output is expected to be a
repetition of 7993 samples, except for the first several samples in the first iteration.

The Makefile includes the commands to run AI Engine simulation and post-process the output
data. The test results shown in the following figure suggest that the output of AI Engine kernel
bit-true matches the reference test vector, and the target throughput of 700 MHz is achieved
with 2% margin.

$ make aie

 Arbitrary Resampler AIE Sim Result

Throughput = 715.718 Msps
Mismatch = 0

The RTL design is verified in a pure RTL simulation environment with self-checking monitors.
Upon the completion of simulation, the test results are output as follows, which suggest the RTL
behaviors are as expected.

$ make rtlsim

SIN Mismatch = 0
AIN Mismatch = 0
DIN Mismatch = 0

Test 0: Mismatch = 0, IdleCycle = 0, Latency = 500 cycles, ErrFlag = 0
Test 1: Mismatch = 0, IdleCycle = 0, Latency = 500 cycles, ErrFlag = 0

*************** TEST PASSED ****************

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 11

https://www.xilinx.com

The AI Engine and PL kernels are now ready for integration. For this design of two PL kernels in
three clock domains, the whole system integration is completed with 14 lines of code, as shown
in the figure below. A larger design with hundreds of AXI buses can benefit more from this
approach because manually connecting thousands of signals in RTL is prone to errors.

[connectivity]
Declare Kernels
nk=tst_arf:1:tst_arf_1
nk=plk_arf:1:plk_arf_1

TESTER -> PL Kernel
sc=tst_arf_1.arf_in:plk_arf_1.arf_in

PL Kernel -> AIE
sc=plk_arf_1.aie_sin:ai_engine_0.sin
sc=plk_arf_1.aie_ain:ai_engine_0.ain
sc=plk_arf_1.aie_din:ai_engine_0.din

AIE -> PL Kernel
sc=ai_engine_0.dout:plk_arf_1.aie_out

PL Kernel -> TESTER
sc=plk_arf_1.arf_out:tst_arf_1.arf_out

[clock]
ID=0: 100MHz for Registers
id=0:tst_arf_1.reg_clk

ID=4: 375MHz for AIE Interface
id=4:plk_arf_1.aie_clk
id=4:tst_arf_1.aie_clk

ID=3: 500MHz for DAC Interface
id=3:plk_arf_1.dac_clk
id=3:tst_arf_1.dac_clk

Debugging with waveform views in a software simulation environment is much easier than doing
so directly on hardware with limited visibility. The Vitis compiler supports PS+PL+AI Engine co-
simulation and uses the Vivado® simulator as the GUI to display waveforms, on which latencies
of various signals can be measured. The ARF output signals in the 500 MHz clock domain
(dut_out_axi_trdy and dut_out_axi_tvld in the figure below) are fine-tuned to have a
fixed latency of 1 μs between them. The cross-clock-domain signals and AXI interfaces will have
some timing uncertainties. However, they are completely absorbed by the output FIFO and
transparent to the custom logic.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 12

https://www.xilinx.com

Figure 11: ARF Input and Output Timing Diagram

Output latency is fixed to 1us

Input delay can fluctuate Delayed output to clean input jitters

X26166-012522

After the design passes software verification, more comprehensive and longer tests are
performed on the VCK190 evaluation board. By default, VCK190 boards come with
VC1902-2MP devices, however, in the test platform, the part number is modified to
VC1902-1LLP, which is recommended for customers who prioritize power efficiency. The
software running on the Arm® processor starts and stops the test 10 times, from one million
iterations (eight billion input samples) in the first test with an increment of 1.2 million iterations
(10 billion samples) in each of the following tests. In the end, a short summary is output via the
COM port.

-- ARBITRARY RESAMPLING FILTER TEST SUMMARY --

 TestID Latency(us) Outputs Idle Mismatch Flag Result

 0 1.000 12279095842 0 0 0x00 PASS
 1 1.000 27437128450 0 0 0x00 PASS
 2 1.000 42595161058 0 0 0x00 PASS
 3 1.000 57753242780 0 0 0x00 PASS
 4 1.000 72911275388 0 0 0x00 PASS
 5 1.000 88069307996 0 0 0x00 PASS
 6 1.000 103227340606 0 0 0x00 PASS
 7 1.000 118385373214 0 0 0x00 PASS
 8 1.000 133543442656 0 0 0x00 PASS
 9 1.000 148701475266 0 0 0x00 PASS

PASS!

The test result confirms all the design targets have been met:

• All output samples match the reference test vector stored in ROMs.

• A deterministic latency of 1 μs is measured for all the tests.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 13

https://www.xilinx.com

• No idle cycle is observed in the output data bus, which means the Valid signal stays solid
High during the test.

• Error flags are not asserted, which means the FIFOs did not underflow.

Conclusion
ARFs have a wide application in multi-rate, multi-standard signal processing systems. The design
of ARFs requires a flexible controller in the programmable logic and a heavy-lifting computation
engine in the AI Engine. Versal AI Core devices with Vitis software make the design of such
complicated heterogenous systems much easier than before. This application note uses a simple
ARF design to illustrate the complete tool flow that enables algorithm engineers, AI Engine
engineers, RTL designers, and software developers to work together in parallel. This application
note provides an example of the design methodology described in Versal ACAP System and
Solution Planning Methodology Guide (UG1504).

Reference Design
Download the reference design files for this application note from the Xilinx website.

Reference Design Matrix

The following checklist indicates the procedures used for the provided reference design.

Table 3: Reference Design Matrix

Parameter Description
General

Developer name Matt Ruan, Hanson He, Allan Zong

Target devices Versal AI Core

Source code provided? Yes

Source code format (if provided) MATLAB script, AI Engine C code, Verilog, and Makefile

Design uses code or IP from existing reference design,
application note, 3rd party or Vivado software? If yes, list.

No

Simulation

Functional simulation performed Yes

Timing simulation performed? No

Test bench provided for functional and timing simulation? No

Test bench format Verilog and C

Simulator software and version AI Engine Simulator and XSIM in Vitis 2021.2

SPICE/IBIS simulations No

Static timing analysis performed? Yes

Hardware Verification

Hardware verified? Yes

Platform used for verification VCK190

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 14

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1504-acap-system-solution-planning-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=c54ae7ff-73c1-45d9-a918-93965ad3df32;d=xapp1373-arf-design.zip
https://www.xilinx.com

References
This application note uses the following references:

1. C. Dick and F. Harris, "Options for Arbitrary Resamplers in FPGA-based modulators," in
ASILOMAR, 2004, pp. 777-781 Vol. 1, available at https://www.semanticscholar.org/paper/
Options-for-arbitrary-resamplers-in-FPGA-based-Dick-Harris/
2d1b1808b9fd1a66631838f9f3d593f439f4ea91

2. Xilinx AI Engine and Their Applications (WP506)

3. Versal ACAP System and Solution Planning Methodology Guide (UG1504)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
02/28/2022 Version 1.0

Initial release. N/A

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 15

https://www.semanticscholar.org/paper/Options-for-arbitrary-resamplers-in-FPGA-based-Dick-Harris/2d1b1808b9fd1a66631838f9f3d593f439f4ea91
https://www.semanticscholar.org/paper/Options-for-arbitrary-resamplers-in-FPGA-based-Dick-Harris/2d1b1808b9fd1a66631838f9f3d593f439f4ea91
https://www.semanticscholar.org/paper/Options-for-arbitrary-resamplers-in-FPGA-based-Dick-Harris/2d1b1808b9fd1a66631838f9f3d593f439f4ea91
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp506-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1504-acap-system-solution-planning-methodology.pdf
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2022 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan, Versal,
Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx
in the United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and
other countries. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. All
other trademarks are the property of their respective owners.

Arbitrary Resampling Filter Design

XAPP1373 (v1.0) February 28, 2022 www.xilinx.com
Application Note 16

https://www.xilinx.com

	 Arbitrary Resampling Filter Design
	Summary
	Introduction
	Features
	Arbitrary Resampling Filter
	Design Specifications
	Design Planning
	Heterogeneous System Design Methodology
	Design Validation
	Conclusion
	Reference Design
	References
	Revision History
	Please Read: Important Legal Notices

