作者:FPGA技术实战
Xilinx建议使用非阻焊定义的(NSMD)铜材BGA焊盘,以实现最佳板设计。NSMD焊盘是不被任何焊料掩模覆盖的焊盘,而阻焊定义的(SMD)焊盘中有少量阻焊层盖住焊盘平台。下图说明了NSMD和SMD焊盘之间的区别。
2. 层数估计与优化
2.1 层数估计
一种快速估计FPGA BGA封装完全扇出所需PCB层数的方法是使用以下公式:
每个通道的路由(Routes per channel)是一个或两个,这取决于在BGA焊盘之间路由一个还是两个信号。下表显示了完全路由Xilinx FPGA或ACAP所需的信号层的大致数量。
表1:每个封装引脚的近似信号层
Versal®体系结构、UltraScale™体系结构、7系列和6系列封装具有完整的焊球矩阵。有效路由这些封装所需的真实层数由多种因素决定,包括:BGA尺寸(引脚数量) 、焊盘尺寸、焊盘间距和走线宽度、固定引脚 、背面钻及制造技术。
1)BGA尺寸(引脚数量)
BGA中引脚的数量表示要路由的信号的数量。由于物理空间的限制,路由所需的信号数量与所需信号层的数量成比例。
焊盘的大小和间距决定了相邻焊盘之间用于信号扇出的可用空间。基于所选择的走线宽度,可以在相邻焊盘之间路由一个或两个信号。如果一个信号在相邻焊盘之间扇出,则一个信号行可以在单个信号层上布线。但BGA封装最外面的一行,它允许每层有两条路由。
3)固定引脚
Xilinx FPGA和ACAP引脚的设计考虑到了最大的灵活性。然而,某些FPGA/ACAP信号,如JTAG、收发器输入和输出以及存储器控制器信号(以及其他信号)具有固定位置,这意味着与可以根据需要交换的其他信号相比,这些信号的路由是有限的。固定位置导致布局权衡,这可能会对所需信号层的数量产生影响。
背钻孔是一种将未使用的过孔短截线的金属钻掉以消除短截线引起反射的可能性的技术,反射可能会导致信号完整性问题。通常,由于可制造性问题,反向钻孔可以防止在焊盘和过孔之间路由多于一个信号的能力。在开始和布局活动之前,请始终咨询PCB制造商关于反向钻孔的能力。
5)制造技术
1)盲孔(+20%至+40%的制造成本)
与通孔过孔相反,盲过孔不从顶层行进到底层。盲过孔从顶层或底层传播到内部信号层,为其他布线腾出上方或下方的空间。
2)埋入式过孔(+25%至+60%的制造成本)
埋入过孔完全位于印刷电路板内部,不接触顶层或底层。
3)焊盘中过孔(+10%至+20%的制造成本)
焊盘中通孔技术是将通孔直接放置在BGA焊盘上,从而减少了将信号迹线记录到顶层或底层的需要。这允许在BGA下更容易的逸出路由,因为信号可以从焊盘直接向下传播到另一层。此外,通过在顶部或底部布线层上不具有信号的任何部分,可以更好地提高信号的阻抗。下图说明了焊盘中过孔的机械设计。
纵横比是板厚与最小孔径的比值,数值越大,加工难度也就越大。
最大板厚度是最小钻孔直径和纵横比的函数,两者都由PCB制造商提供。15:1的典型纵横比表明板的厚度不能超过钻头直径的15倍。例如,10mil的钻头直径将导致150mil的最大板厚度。除了CP封装外,Xilinx建议成品钻头直径为10~15mil,这意味着实际钻头直径约为13~18mil(电镀通常将直径减小约3mil)。10mil的钻头将导致10:1比例的最大板厚度为100mil,或15:1比例的150mil。先进的制造技术可以支持17:1到22:1的比例,但成本会增加。
Xilinx®BGA器件的FPGA/ACAP球垫和过孔的尺寸定义如下图所示。下表显示了基于BGA球间距的实际尺寸。
表3:BGA/走线路由尺寸
表4:过孔间走线