梯度下降法

机器学习中的常见问题——几种梯度下降法

一、梯度下降法
在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数l,接下来便是通过优化算法对损失函数l进行优化,以便寻找到最优的参数θ。在求解机器学习参数θ的优化算法中,使用较多的是基于梯度下降的优化算法(Gradient Descent, GD)。