Xilinx的Overlay选择指南
judy 在 周三, 01/23/2019 - 09:26 提交
FPGA(现场可编程门阵列)是半导体器件,通过设计实现具有可编程互连的逻辑块阵列。与“硬化”设备(即CPU / GPU)不同,FPGA可以编程为实现用户所需的特定硬件设计。在设计硬件系统之后,必须使用二进制文件对FPGA进行编程。此过程通常称为配置。此外,在具有固定功能和动态功能的用例中,可以部分地重新配置FPGA
FPGA(现场可编程门阵列)是半导体器件,通过设计实现具有可编程互连的逻辑块阵列。与“硬化”设备(即CPU / GPU)不同,FPGA可以编程为实现用户所需的特定硬件设计。在设计硬件系统之后,必须使用二进制文件对FPGA进行编程。此过程通常称为配置。此外,在具有固定功能和动态功能的用例中,可以部分地重新配置FPGA
本文列出了能够与 Vivado 设计套件联用的支持性第三方仿真器。
本文主要介绍以太网Drive Side接口(MAC和PHY之间的接口),也被称为MII(Media Independent Interface),支持从10M到100G的不同应用场合,主要包括MII、RMII、SMII(Cisco Systems Specification)、SSMII、S3MII、GMII、RGMII、SGMII、QSGMII(Cisco Systems Specification)、TBI、RTBI、XGMII、XAUI、RXAUI、XLGMII、XLAUI、CGMII、CAUI、HIGIG(Broadcom Specification)、Interlaken等接口
现今,使用FPGA技术进行射频数据信号处理已经非常普遍,因为该技术可实现高速计算能力。通常情况下,处理大量RF数据需要部署的FGPA资源越来越多。因此,FPGA模块会跨多个处理子系统进行部署。借助FlexRIO FPGA模块和LVDS数字接口模块,ST Kinetics成功地设计并实现了一个解决方案
在介绍ODDR之前,我们先简单了解一下OLOGIC。OLOGIC块在FPGA内的位置紧挨着IOB,其作用是FPGA通过IOB发送数据到器件外部的专用同步块。OLOGIC 资源的类型有OLOGIC2(位于HP I/O banks)和OLOGIC3(位于HR I/O banks)。
以太网融合已成现实。以太网起源于非关键型计算机网络,已成为工业自动化、交通运输以及航空航天/国防的标准。以太网交换机为动态扩展增加了灵活性。基于 ARM 并支持可扩展以太网交换机的多核处理器恰好具有所需的基础架构&灵活应变。非常适合您的应用,不大不小,而且成本正好
最近入手了 UltraZed-EG PCIe Carrier Card ,这是一款基于 UltraZed-EG 核心板进行延伸的开发板,和 Zybo Board 类似,是一款同时具有 Xilinx FPGA 并且包含了 ARM CPU 的开发平台。为了了解这块开发板,我做了一些整理,让我们一样从硬件以及外围开始吧~
阿里云FaaS平台创新及应用场景
本文主要介绍以太网Line Side对外接口,也被称为MDI(Media Dependent Interface),包括电口和光口。其中光模块主要针对10G以下的,10G以上的本文就不做介绍了。
前面的中断学习中我们学了按键,GPIO,Timer,是时候把它们整合到一起了。今天我们混合使用PS/PL部分的资源,建立一个比较大的系统