文章来源:微波世界
当受到电磁干扰时,发射器和接收器之间的通信就会中断。当出现干扰信号时,电磁频谱的某一区域将无法使用。无线电、移动电话、GPS、M2M、蓝牙、Wi-Fi、工业/科学/医疗(ISM)射频模块和卫星连接等系统是当今在超高频(UHF)频段工作的主要通信系统,当这些系统因噪声而无法使用时,就需要一个应急通信系统。1
该系统应结合自动信道扫描、跳频和信道监听,并利用接收信号强度指示器(RSSI)信息区分噪声和数据,以提供多信道广播和接收。本文介绍了一种安全无线通信系统,该系统可在电磁噪声和干扰的影响下进行自动信道扫描和信道同步,以创建新的通信信道。该系统是通过芯片上的可编程系统平台实现的。
对几种商用射频接收器、射频发射器和射频接收器/发射器模块进行了研究。之所以选择HopeRF RFM22B收发器模块,是因为它具有信道选择、跳频、RSSI反馈和多信道射频通信功能。
然而,实现设计的功能是算法和嵌入式系统平台的能力。目前有多种平台可供选择,包括Raspberry Pi、2 Zynq、3 Jetson、4 Altera CycloneII、5 Beagle Bone、6 Odroid、7 STM328和Cypress PSoC9。本研究采用Cypress PSoC,因为它具有CPU内核和可配置的模拟与数字模块,这使其有别于传统微控制器。Cypress PSoC在算法的实施、开发和调试阶段为设计人员提供了易用性。
在这一设计中,有一个提供待发送数据的主电路、一个接收发送数据的副电路和一个噪声发生器,用于测试通信系统在干扰情况下的性能。噪声发生器充当干扰器,在所需信道上进行广播。主设备确保键盘输入的数据在不含噪声的空信道上传输。副设备与主设备调谐的信道同步捕获数据。数据已接收的通知也会发送到主设备。相关算法可确保数据以安全可靠的方式传输。10-13
系统描述
RFM22B是一款低成本无线ISM收发器模块,工作频率范围为240-960MHz。它在接收模式下的功耗为55.5mW,在发射模式下的最大输出功率为265mW。RFM22B通信模块的接收灵敏度为-121dBm,最大输出功率为+20dBm。考虑到工作频率下的自由空间路径损耗,这些模块可在开放空间内提供长距离通信。
天线分集和跳频支持可用于扩展范围和提高性能。自动唤醒定时器、低电量检测器、64字节Tx/Rx-FIFO、自动数据包处理和前置信号检测等附加系统功能可降低总体功耗,并支持使用低成本系统MCU。14
Cypress PSoC包含一个CPU内核以及可配置的模拟和数字模块,这使其有别于传统的微控制器。PSoC和RFM22B模块使用串行外设接口(SPI)协议进行通信。SPI连接如图1所示。RFM22B通过SCLK、SDI和nSEL引脚接收PSoC的数据。PSoC从RFM22B收发器的SDO输出引脚读取数据。通过Cypress PSoC Creator软件,可以为PSoC 5LP片上系统生成程序。
图1 PSoC Creator程序中RFM22B的SPI连接。
通信协议用于写入或读取集成在PSoC上的寄存器。SPI数据交换如下:
1比特读写选择比特(R/W)以16比特字符串的形式出现,其后7比特为地址空间,最后8比特为数据。在这里,如果读写选择比特为0,则从7比特地址读取数据,如果为1,则向7比特地址写入数据。
在写入所需地址后,SS引脚置零,R/W比特置1,所需地址将在随后的7比特中发送。地址之后的8比特数据也以这种方式写入所需地址。写入是通过在时钟信号上升沿传输一个比特来完成的。
在SPI协议中,必须先将SS引脚置零,才能开始数据交换,而且必须以这种方式选择副电路。如果没有选择副电路,则无法进行数据交换。在读取操作中,R/W比特被置零,地址在随后的7比特中发送。地址后面的8比特数据被置零,并填充从该地址读取的数据。与写操作一样,该操作在时钟信号的上升沿执行。
RFM22B采用SPI协议编程,允许使用频移键控(FSK)、15 高斯频移键控(GFSK)16和开/关键控(OOK)17调制类型。
主电路和副电路设计
嵌入式系统设计采用PSoC 5LP片上系统(图2)。在主电路中,有一个用于输入数据的键盘、一个2x16 LCD用户界面屏幕、一个RFM22B收发器模块和一个用于产生多通道射频信号的天线单元。在副电路中,键盘的使用是可选的,单向通信则不需要键盘。
图2 主电路和副电路框图。
在主电路中,采用I2C串行通信协议的微型键盘(cardKB)用于向系统输入数据。它的尺寸仅为84×54mm,有50个按键、一个neopixel LED、一个Atmega328P处理器和一个通信端口。使用shift、ctrl、alt、sym和fn键可以发送不同的字符。
图3是采用CY8C5868AXI-LP035型PSoC的主/副电路的原理图。PSoC采用100引脚薄型四扁平封装,由24MHz晶振提供时钟。串行线调试编程输出用于方便编程操作。
图3 主/副电路图。
噪声发生器电路可进行外部参数调整,也可用作测试干扰器(图4)。噪声发生器电路中的微型开关(DIP开关)用于选择噪声注入的频段。
图4 噪声发生器电路框图
通信系统印刷电路板(PCB)如图5所示。红色为主电路板和副电路板,黑色为多通道射频噪声注入电路板。
图5 制作的通信系统印刷电路板组件。
实验结果
图6的设置用于系统评估。
图6 测试电路框图
情景1:在有噪声的情况下从不同信道传输数据包
在第一种情况下,在传输由八个字母"DATATEST"组成的样本信息时,在不同信道中注入噪声,以检验系统的动态行为。单词"DATATEST"的每个字母以1秒的间隔传输,系统通电时环境中没有噪声信号。
在信道无噪声期间,"DATA"从频率为300MHz的信道1发送到接收机。紧接着,噪声发生器启动,噪声被注入300至340MHz频段。空信道扫描算法开始查询其他信道,以传输数据串的剩余部分。由于频率在300和340MHz之间的信道中存在噪声,频率为350MHz的信道6上的主单元和副单元建立了连接,并发送了"TE"。此时,噪声被注入350至380MHz频段。同样,信道扫描算法在390MHz的信道10上建立连接,发送最后两个字母"ST"。这样,数据包的传输(尽管是部分传输)就完成了。情景1的频谱分析仪截图如图7所示。在不同时间信道随机产生噪声的情况下,信道跳频成功地传输了测试数据。图8进一步说明了这一点。
图7 随机噪声注入情况下的自动跳频性能:在信道中无噪声的情况下,从频率为300MHz的信道1向接收机发送"DATA"(a);信道1至5中存在噪声,在频率为350MHz的信道6向接收机发送"TE"(b);信道1至9中存在噪声,在频率为390MHz的信道10向接收机发送"ST"(c)。
图8 存在噪音时的数据包传输。
情景2:注入动态噪声的图像传输
传输符号"1"的5×5像素灰度图像(图9a)。每个像素在黑白之间有255种色调。当环境中没有噪声时,预计所有数据都在同一信道上传输。然而,在存在时变噪声的情况下,数据包可能不会完全在同一信道上传输,而是从不同的信道上分批传输。
这些信息通过频率为300MHz的第一信道传输。当在t1至t3时间间隔内向300MHz信道注入噪声时,第二和第三个像素的灰度值(25和66)将从频率为310MHz的第二个信道传输。由于t3至t25时间间隔内的噪声随机变化,数据部分在最合适的空信道中传输(图9b)。
图9 随时间变化的图像数据传输与动态噪声注入:图像映射(a)和传输频率与时间间隔(b)。
结论
一种新型通信系统采用PSoC实现了扫描功能。它能在出现噪声或干扰时改变信道,同时通过检测到的清晰信道保持数据流。所开发系统中用于信道扫描、发射机-接收机同步和成功接收的信息确认算法非常新颖。
RFM22B可使用FSK、GFSK和OOK调制技术。它使用SPI串行通信协议进行通信。PSoC SPI模块简化了射频模块的编程。
主设备确保从键盘输入的数据通过第一个无噪声的空闲信道传输。副设备通过扫描空闲信道从主设备获取数据。
在嘈杂的环境中,通过在使用所开发算法创建的信道之间循环,可确保安全的射频通信。已演示原型的主、副和噪声发生器电路支持240-960MHz的频率范围(300-400MHz的频率范围用于测试),并给出了多通道系统的一般解决方案。