卷积神经网络的最佳解释
judy 在 周二, 08/14/2018 - 11:03 提交![](https://cdn.eetrend.com/files/styles/picture400/public/2018-08/wen_zhang_/100013713-46707-13270-38692-shenjingwangluo.jpg?itok=MtBrrdIG)
CNN由由可学习权重和偏置的神经元组成。每个神经元接收多个输入,对它们进行加权求和,将其传递给一个激活函数并用一个输出作为响应。整个网络有一个损失函数,在神经网络开发过程中的技巧和窍门仍然适用于CNN。很简单,对吧?
那么,卷积神经网络与神经网络有什么不同呢?
卷积神经网络(CNN)是一种深度学习算法,特别擅长处理图像和视频数据。它通过模拟生物视觉系统的方式,利用卷积层、池化层等多层网络结构自动提取图像中的特征,进行分类、识别和预测。CNN被广泛应用于计算机视觉任务,如图像分类、人脸识别、物体检测等,已成为深度学习领域的重要模型之一。
CNN由由可学习权重和偏置的神经元组成。每个神经元接收多个输入,对它们进行加权求和,将其传递给一个激活函数并用一个输出作为响应。整个网络有一个损失函数,在神经网络开发过程中的技巧和窍门仍然适用于CNN。很简单,对吧?
那么,卷积神经网络与神经网络有什么不同呢?
学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于CNN的物体检测过程有所帮助。
1. 概念
英文名:convolutional neural network
是一种前馈神经网络,即表明没有环路,普通神经网络的 BP 算法只是用于方便计算梯度,也是前馈神经网络。
是深度学习结构的一种,是一种深度、前馈神经网络。
可以使用 BP 算法进行训练