背景:我们需要仿照ZynqNet的模式构造卷积的IPcore用于FPGA的优化。
目的:搞懂zynqNet的cache的实现。
几种Cache
四种on-chip cache(report 4.2.4)
processing_elements和memory_controller
注意netconfig与network不仅在CPU端定义中有运用到,在FPGA端的;定义之中也有用到。
一、Ocache
全局变量 float OutputCache::OBRAM[MAX_NUM_CHOUT];其中OBRAM的大小为MAX_NUM_CHOUT,为最大的输出的通道数。根据前面for height与for width就确定了是针对单个输出的像素点,所以for channel in与for channle out就是单个像素点上先循环feature map然后循环output channel。
for channel in时固定feature,然后权重进行循环,MACC后放入OBRAM。然后换一个channel in的9*9,再进行更换weiht然后累加与OBRAM。
BRAM与DRAM之间的数据搬运是MemoryController完成的,所以需要在memroyController之中设置相应的偏移量。
1.1 数据于OBRAM上累加
ProcessingElement::macc2d(pixels,weights,macc_sum);
if (cur_channel_in == 0) {
OutputCache::setOutChannel(cur_channel_out, macc_sum);
} else {
OutputCache::accumulateChannel(cur_channel_out, macc_sum);
}
void OutputCache::accumulateChannel(int co, float value_to_add) {
#pragma HLS inline
#pragma HLS FUNCTION_INSTANTIATE variable = co
#pragma HLS ARRAY_PARTITION variable = OBRAM cyclic factor = N_PE
#pragma HLS RESOURCE variable=OBRAM core=RAM_T2P_BRAM latency=2
float old_ch = getOutChannel(co);
float new_ch = old_ch + value_to_add;
setOutChannel(co, new_ch);
};
float OutputCache::getOutChannel(int co) {
#pragma HLS inline
return OBRAM[co];
}
void OutputCache::setOutChannel(int co, float data) {
#pragma HLS inline
#pragma HLS FUNCTION_INSTANTIATE variable = co
OBRAM[co] = data;
}
如果是第一个输入通道就设定OBRAM相应的位置为MACC值,若不是第一个输入通道就表示需要在不同的输入通道之间进行累加。
1.2 写出OBRAM到DRAM上
}//channel_out loop
}//channel_in loop
for(cur_channel_out=0; cur_channel_out
OutputCache::OBRAM[cur_channel_out]);
}
在进行完输入通道循环之后,所有的输入输出通道都在OBRAM上进行了累加,
然后,我们根据相应的地址映射将OBRAM上的数据写入DRAM之中。
二、ImageCache
2.1 ImageCache的大小
首先,定义flaot ImageCache::IBRAM[MAX_IMAGE_CACHE_SIZE];在zynqNet之中,这些参数被计算好在network.h文件之中。
ImageCache是一次更新一行还是所有的iamge均存于Cache之中。我们需要找出答案。
data_t ImageCache::IBRAM[MAX_IMAGE_CACHE_SIZE];
imgcacheaddr_t ImageCache::line_width;
void ImageCache::setLayerConfig(layer_t &layer) {
#pragma HLS inline
width_in = layer.width;
height_in = layer.height;
ch_in = layer.channels_in;
line_width = ch_in * width_in;
loads_left = line_width * height_in;
curr_img_cache_addr = 0;
#pragma HLS Resource variable = loads_left core = MulnS latency = 2
reset();
}
2.2 DRAM读入IBRAM
我们需要注意到zynqNet与MTCNN中feature-map的不同,MTCNN中的feature-map的排列方式为for channel,for height. for width.而zynqNet中的在IBRAM上的排列方式为for height,for width, for channel.所以在读取的过程中会有一定的差别。这样,无论DRAM的IBRAM还是IBRAM到PE之中,的地址映射顺序都会产生变化。我们确定BRAM上的顺序为for row,for col, for channel
//zynqNet ImageCache.cpp
void ImageCache::setNextChannel(data_t value) {
imgcacheaddr_t MAX_ADDR = (line_width * NUM_IMG_CACHE_LINES - 1);
// Write Value into IBRAM
IBRAM[curr_img_cache_addr] = value;
// Check and Wrap Write Address into IBRAM
if (curr_img_cache_addr == MAX_ADDR)
curr_img_cache_addr = 0;
else
curr_img_cache_addr++;
}
void ImageCache::preloadPixelFromDRAM(data_t *SHARED_DRAM) {
#pragma HLS inline
L_PRELOAD_PIXEL_FROM_DRAM: for (channel_t ci = 0; ci < ch_in; ci++) {
#pragma HLS LOOP_TRIPCOUNT min = 3 max = 1024 avg = 237
#pragma HLS pipeline II = 1
#pragma HLS latency min=4
data_t px = MemoryController::loadNextChannel(SHARED_DRAM);
setNextChannel(px);
}
loads_left = loads_left - ch_in;
}
void ImageCache::preloadRowFromDRAM(data_t *SHARED_DRAM) {
#pragma HLS inline
L_DRAM_PRELOADROW_X: for (coordinate_t x = 0; x < width_in; x++) {
#pragma HLS LOOP_TRIPCOUNT min = 8 max = 256 avg = 45
preloadPixelFromDRAM(SHARED_DRAM);
}
}
上面为加载一个row的函数,然后在当前行中进行循环列,列中循环channel,运用嵌套的循环实现从DRAM中一行的加载。setNextChannel是将相应的值写入IBRAM之中,然后BRAM上的地址进行++以便进行下次写入。
2.3 DRAM中读出的顺序
在float px = MemoryController::loadNextInputChannel(input_ptr);将图像从DRAM读出为像素值。我们现在就要确定如何将此值从DRAM中读出。
void ImageCache::preloadPixelFromDRAM(data_t *SHARED_DRAM) {
#pragma HLS inline
L_PRELOAD_PIXEL_FROM_DRAM: for (channel_t ci = 0; ci < ch_in; ci++) {
#pragma HLS LOOP_TRIPCOUNT min = 3 max = 1024 avg = 237
#pragma HLS pipeline II = 1
#pragma HLS latency min=4
data_t px = MemoryController::loadNextChannel(SHARED_DRAM);
setNextChannel(px);
}
loads_left = loads_left - ch_in;
}
唯一与之相关的语句:data_t px = MemoryController::loadNextChannel(SHARED_DRAM);
//-------------------------to IBRAM---------------------------------------
//load image from DRAM to reg
void MemoryController::setPixelLoadRow(coordinate_t y) {
layer_pixel_offset = layer_input_offset + pixels_per_row * y;
}
//load image from DRAM to BRAM (channel)
data_t MemoryController::loadNextChannel(data_t* SHARED_DRAM) {
#pragma HLS inline
#pragma HLS pipeline II=1
data_t pixel_from_ram = reg(SHARED_DRAM[dram_data_offset + layer_pixel_offset]);
layer_pixel_offset++; // increment address for next fetch
return pixel_from_ram;
};
我们可以看出,此为从DRAM加载一行的值到读出来到reg的相关语句。前语句为设置相应的偏移地址,后一行为从DRAM的偏移地址之中读出相应的值。zynqNet之中的值为for row for col for channel,所以直接设置每行的偏移地址然后顺序读取即可。
memoryController与IBRAM中的地址变量一直在自己自增,以确保对应的关系。在IBRAM之中,初始的reset将IBRAM的地址置零,在DRAM之中,初始的地址由setPixelLoadRow确定。
2.4 每层之中如何读取
在FPGA开始行列循环之前,先读取行0与像素点列(0,1)
// Preload Row 0 + Pixel (1,0)
MemoryController::setPixelLoadRow(0);
ImageCache::preloadRowFromDRAM(SHARED_DRAM);
MemoryController::setPixelLoadRow(1);
ImageCache::preloadPixelFromDRAM(SHARED_DRAM);
我们现在需要搞明白一个问题,在BRAM之中的图像到底如何只存4个row,卷积完成之后是擦掉重写还是只更新一行。后续发现是直接将像素值写入前一行,一个像素一个像素的写入。因为IBAM的地址在自增,自增到最大值后返回0.后续用取模的运算来实现对单个行的读取。
void ImageCache::setNextChannel(data_t value) {
imgcacheaddr_t MAX_ADDR = (line_width * NUM_IMG_CACHE_LINES - 1);
// Write Value into IBRAM
IBRAM[curr_img_cache_addr] = value;
// Check and Wrap Write Address into IBRAM
if (curr_img_cache_addr == MAX_ADDR)
curr_img_cache_addr = 0;
else
curr_img_cache_addr++;
}
自增的IBRAM地址。
//calculate row offset in IBRAM
imgcacheaddr_t ImageCache::precalcYOffset(const coordinate_t y) {
#pragma HLS inline
cacheline_t req_line = (y) % NUM_IMG_CACHE_LINES;
imgcacheaddr_t addr_line_offset = req_line * line_width;
#pragma HLS RESOURCE variable=addr_line_offset core=MulnS latency=2
return addr_line_offset;
}
通过取模来读出在BRAM之中的哪一行。然后将新读入的继续进行写入。
// Preload Row 0 + Pixel (1,0)
MemoryController::setPixelLoadRow(0);
ImageCache::preloadRowFromDRAM(SHARED_DRAM);
MemoryController::setPixelLoadRow(1);
ImageCache::preloadPixelFromDRAM(SHARED_DRAM);
// Y Loop
L_Y:
for (y = 0; y < layer.height; y++) {
#pragma HLS LOOP_TRIPCOUNT min = 8 max = 256 avg = 45
// X Loop
L_X:
for (x = 0; x < layer.width; x++) {
#pragma HLS LOOP_TRIPCOUNT min = 8 max = 256 avg = 45
p_pixelSetup : {
// Load Next Pixel (automatically checks #pixels left)
ImageCache::preloadPixelFromDRAM(SHARED_DRAM);
}
之所以只读一行一个像素,我们的理解为padding的时候当作padding的变量了。经过下面查找,zynqNet经过了padding。并且应该为左padding
//in "network.cpp"
network_t *get_network_config() {
network_t *net = new network_t(27, 2528800);
// Layer Attributes: ( NAME , W, H, CI, CO, K, P, S, R, S1, S2, GP)
addLayer(net, layer_t("c1 ", 256, 256, 3, 64, 3, 1, 2, 1, 0, 0, 0));
addLayer(net, layer_t("f2/s3 ", 128, 128, 64, 16, 3, 1, 2, 1, 0, 0, 0));
addLayer(net, layer_t("f2/e1 ", 64, 64, 16, 64, 1, 0, 1, 1, 1, 0, 0));
addLayer(net, layer_t("f2/e3 ", 64, 64, 16, 64, 3, 1, 1, 1, 0, 1, 0));
addLayer(net, layer_t("f3/s1 ", 64, 64, 128, 16, 1, 0, 1, 1, 0, 0, 0));
addLayer(net, layer_t("f3/e1 ", 64, 64, 16, 64, 1, 0, 1, 1, 1, 0, 0));
。。。
// in "netconfig.cpp" addLayer function
// Align to memory borders (float needed because of ceil() operation below)
float mem_border = MEMORY_ALIGNMENT / sizeof(data_t);
// Data Size Calculations
int input_data_pixels = layer.width * layer.height * layer.channels_in;
int width_out =
1 + std::floor((float)(layer.width + 2 * layer.pad - layer.kernel) /
layer.stride);
int height_out =
1 + std::floor((float)(layer.height + 2 * layer.pad - layer.kernel) /
layer.stride);
int output_data_pixels = width_out * height_out * layer.channels_out;
int num_weights = // conv + bias weights
layer.channels_out * layer.channels_in * layer.kernel * layer.kernel +
layer.channels_out;
2.5 从IBRAM读出到PE
//zynqNet之中的读取
void ProcessingElement::processInputChannel(const coordinate_t y,
const coordinate_t x,
const channel_t ci_in,
const channel_t ch_out) {
#pragma HLS inline off
#pragma HLS FUNCTION_INSTANTIATE variable = ci_in
#pragma HLS dataflow
channel_t ci = ci_in;
weightaddr_t ci_offset;
data_t pixel_buffer[9];
#pragma HLS ARRAY_PARTITION variable = pixel_buffer complete dim = 0
// Preload Image Pixel Buffer (fetch pixels around (y,x,ci))
preloadPixelsAndPrecalcCIoffset(y, x, ci, ch_out, ci_offset, pixel_buffer);
// MACC All Output Channels
processAllCHout(ch_out, ci, ci_offset, pixel_buffer);
}
在preloadPiexlsAndPrecalcCIoffset之中,先根据相应的行,设置行的偏移量,再根据列读出当前列的值。
void ProcessingElement::preloadPixels(const coordinate_t y_center,
const coordinate_t x_center,
const channel_t ci, data_t buffer[9]) {
#pragma HLS inline
#pragma HLS pipeline
L_PE_loadPixel_Y:
for (int j = 0; j < 3; j++) {
coordinate_t y = y_center + j - 1;
imgcacheaddr_t y_offset = ImageCache::precalcYOffset(y);
L_PE_loadPixel_X:
for (int i = 0; i < 3; i++) {
coordinate_t x = x_center + i - 1;
data_t px = reg(ImageCache::getPixel(y, y_offset, x, ci));
buffer[j * 3 + i] = px;
}
}
}
相应偏移量的计算及读取为:
//calculate row offset in IBRAM
imgcacheaddr_t ImageCache::precalcYOffset(const coordinate_t y) {
#pragma HLS inline
cacheline_t req_line = (y) % NUM_IMG_CACHE_LINES;
imgcacheaddr_t addr_line_offset = req_line * line_width;//row_offset
#pragma HLS RESOURCE variable=addr_line_offset core=MulnS latency=2
return addr_line_offset;
}
//get pixel out from BRAM
data_t ImageCache::getPixel(const coordinate_t y, const imgcacheaddr_t y_offset,
const coordinate_t x, const channel_t ci) {
#pragma HLS inline
#pragma HLS RESOURCE variable = IBRAM core = RAM_S2P_BRAM
imgcacheaddr_t addr_pixel_offset = x * ch_in;//col_offset
imgcacheaddr_t addr = y_offset + addr_pixel_offset + ci;//row_offset+col_offset+channel_offset
bool is_padding_pixel = x < 0 | x >= width_in | y < 0 | y >= height_in;
data_t px = is_padding_pixel ? 0.0f : IBRAM[addr];
return px;
}
至此,我们搞懂了zynqNet的IBRAM的运用。我们可以进行MTCNN的IPcore中的IBRAM相关的编写。
MTCNN(十)构建卷积IPcore https://blog.csdn.net/weixin_36474809/article/details/83658473
三、weightCache
相较于图像,权重是一次性将一层的权重一起读到WBRAM之中。所以WBRAM是占用最大的BRAM
3.1 WBRAM的大小
zynqNet之中:
WBRAM为最大的Cache,每次要将整层的权重写入WBRAM,大小为ci×3×3×co个。
定义为data_t WeightsCache::WBRAM[N_PE][NUM_BRAMS_PER_PE][BLOCK_SIZE][9];
我们需要搞明白其中每个变量的意思
即,每个PE上有BRAM用于存储Weight
所以,N_PE×NUM_BRAMS_PER_PE×BLOCK_SIZE的大小为ci×co
注意相应的优化指令为:
// Array Partitioning
#pragma HLS ARRAY_PARTITION variable = WBRAM complete dim = 1 // PE ID
#pragma HLS ARRAY_PARTITION variable = WBRAM complete dim = 2 // block ID
#pragma HLS ARRAY_PARTITION variable = WBRAM complete dim = 4 // weight ID
#pragma HLS RESOURCE variable = WBRAM core = RAM_S2P_BRAM latency = 3
关于其优化指令,参考 FPGA基础知识(十二)HLS增大吞吐量的优化 https://blog.csdn.net/weixin_36474809/article/details/81665911
可以看出,把第一维,第二维,第四维给完全分开。留下第三维为 BlockSize
3.2 WBRAM上的位置关系
#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))
// Depth of single BRAM36 in (1K x 32b) configuration
const int BLOCK_SIZE = 1024;
// Number of BRAM36 needed per PE
const int NUM_BRAMS_PER_PE =
(CEIL_DIV(((MAX_WEIGHTS_PER_LAYER) / 8), BLOCK_SIZE) / N_PE);
// Type Definitions needed
typedef ap_uint
typedef ap_uint
typedef ap_uint
typedef ap_uint
// WBRAM:
// dim0 = PEID = ID of Processing Element associated with this memory portion
// dim1 = blockID = Used to split memory into junks that fit into BRAM32 units
// dim2 = rowID = Row address inside one BRAM32 unit
// dim3 = weightID = last dimension
// - either contains 1 filter = 9 weights (3x3 kernel)
// - or 8 individual weights (1x1 kernel or bias values)
确定相应的权重的位置需要四个参数,PEID,blockID, rowID,weightID,这四个分别为WBRAM上的参数。下面函数就根据相应的weight来算出在WBRAM上的位置。
void WeightsCache::getAddrForSingleWeight(const channel_t co,
const weightaddr_t ci_offset,
PEID_t &PEID, blockID_t &blockID,
rowID_t &rowID,
weightID_t &weightID) {
#pragma HLS INLINE
if (kernel == 3) {
// ci_offset = ci * ch_out
PEID = co % N_PE;
blockID = (((ci_offset + co) / N_PE)) / BLOCK_SIZE;
rowID = (((ci_offset + co) / N_PE)) % BLOCK_SIZE;
weightID = 0;
} else { // kernel == 1
// ci_offset = ci * ch_out
PEID = co % N_PE;
blockID = (((ci_offset + co) / N_PE) / 8) / BLOCK_SIZE;
rowID = (((ci_offset + co) / N_PE) / 8) % BLOCK_SIZE;
weightID = ((ci_offset + co) / N_PE) % 8;
}
}
第二个blockID,运用的是整型的除法,c++中的除法是四舍五入还是舍去小数点后面的?经过实验,发现是舍去小数点后面的。
我们发现zynqNet中权重的存储是for ci,for co,for 3×3 filter的。
所以给定一个权重,其线性的位置为 cur_ci×outChannelNum×9+cur_co×9+filterLoc。每一个3×3filter的初始的位置为 filterSize×(cur_ci*outChannelNum+cur_co). 暂且不管1×1卷积的相关问题,我们只关注3×3卷积。
所以,权重是以co为单位均分入了PE,然后具体的CO在PE之中以相应的规律排列。但是,zynqNet的保证了通道与N_PE的数量是整除的,否则,第一个PEID的计算应该为 (ci_offset+co)%N_PE。
3.3 加载入WBRAM
void WeightsCache::loadFromDRAM(data_t *SHARED_DRAM) {
#pragma HLS inline
weightaddr_t dram_addr = 0;
// Weights:
L_LOADWEIGHTS_CI:
for (channel_t ci = 0; ci < ch_in + 1; ci++) {
#pragma HLS LOOP_TRIPCOUNT MIN = 3 AVG = 238 MAX = 1024
weightaddr_t ci_offset = precalcInputOffset(ci);
bool bias_or_1x1 = (kernel == 1 | ci == ch_in);
numfilterelems_t weights_per_filter = (bias_or_1x1) ? 1 : 9;
weightaddr_t weights_per_ch_out = ch_out * weights_per_filter;
weightaddr_t addr = 0;
ap_uint
channel_t co = 0;
L_LOADWEIGHTS_CO:
for (addr = 0; addr < weights_per_ch_out; addr++) {
#pragma HLS LOOP_TRIPCOUNT MIN = 16 AVG = 258 MAX = 1024
#pragma HLS PIPELINE II = 2
data_t weight = MemoryController::loadNextWeight(SHARED_DRAM, dram_addr);
dram_addr++;
PEID_t PEID;
blockID_t blockID;
rowID_t rowID;
weightID_t weightID;
getAddrForSingleWeight(co, ci_offset, PEID, blockID, rowID, weightID);
if (bias_or_1x1) {
WBRAM[PEID][blockID][rowID][weightID] = weight;
} else { // (kernel == 3)
WBRAM[PEID][blockID][rowID][weight_index] = weight;
}
weight_index++;
if (weight_index == weights_per_filter) {
weight_index = 0;
co = co + 1;
}
}
}
}
循环ci与每个ci上的元素个数,然后运算相应WBRAM地址,从DRAM上的地址读出,写入WBRAM上,然后将DRAM上的地址自增指向下一个地址。我们发现DRAM上的地址总是线性的读入BRAM,所以对于zynqNet来说,其DRAM上的地址基本不用运算,只用自增。而对于我们的MTCNN来说,相应的地址应当进行一定的计算才能得出。
3.4 从WBRAM上加载入processing element
//getting from WBRAM to processing element
void WeightsCache::getNineWeights(const channel_t co,
const weightaddr_t ci_offset,
data_t weights_buf[9]) {
#pragma HLS FUNCTION_INSTANTIATE variable = co
#pragma HLS inline
#pragma HLS pipeline
// Array Partitioning
#pragma HLS ARRAY_PARTITION variable = WBRAM complete dim = 1 // PE ID
#pragma HLS ARRAY_PARTITION variable = WBRAM complete dim = 2 // block ID
#pragma HLS ARRAY_PARTITION variable = WBRAM complete dim = 4 // weight ID
#pragma HLS RESOURCE variable = WBRAM core = RAM_S2P_BRAM latency = 3
// Calculate Memory Address
PEID_t PEID;
blockID_t blockID;
rowID_t rowID;
weightID_t weightID;
getAddrForSingleWeight(co, ci_offset, PEID, blockID, rowID, weightID);
data_t *WBRAM_BLOCK = WBRAM[PEID][blockID][rowID];
// Fetch Weights into Filter Template
data_t weights_temp[9];
#pragma HLS array_partition variable = weights_temp complete dim = 0
L_getNineWeights:
for (int i = 0; i < 9; i++) {
// Fetch all 9 elements in last dimension into registers (weights_temp)
weights_temp[i] = WBRAM_BLOCK[i];
// Fill weights_buf with 0.0f for 1x1 kernel / with weights for 3x3 kernel
weights_buf[i] = (kernel == 1) ? 0.0f : weights_temp[i];
}
// Fill single relevant weight into weights_buf for 1x1 kernel
if (kernel == 1) weights_buf[4] = weights_temp[weightID];
}
data_t WeightsCache::getOneWeight(const channel_t co,
const weightaddr_t ci_offset) {
#pragma HLS FUNCTION_INSTANTIATE variable=co
#pragma HLS pipeline
#pragma HLS inline
PEID_t PEID;
blockID_t blockID;
rowID_t rowID;
weightID_t weightID;
getAddrForSingleWeight(co, ci_offset, PEID, blockID, rowID, weightID);
data_t weight = WBRAM[PEID][blockID][rowID][weightID];
return weight;
}
运算出相应的PEID,blockID, rowID,与weightID然后就进行读取。
四、ProcessingElement的实现
4.1 算法流图
通过流程图看出来是定着imageCache然后取权重。
我们需要在代码中找到如下问题:
4.2 实现代码
先加载pixels[9],然后针对此pixel[9]进行每个channel out的MACC循环累加操作。
//load pixels[9] and loop weight on them
void ProcessingElement::processInputChannel(const coordinate_t y,
const coordinate_t x,
const channel_t ci_in,
const channel_t ch_out) {
#pragma HLS inline off
#pragma HLS FUNCTION_INSTANTIATE variable = ci_in
#pragma HLS dataflow
channel_t ci = ci_in;
weightaddr_t ci_offset;
data_t pixel_buffer[9];
#pragma HLS ARRAY_PARTITION variable = pixel_buffer complete dim = 0
// Preload Image Pixel Buffer (fetch pixels around (y,x,ci))
preloadPixelsAndPrecalcCIoffset(y, x, ci, ch_out, ci_offset, pixel_buffer);
// MACC All Output Channels
processAllCHout(ch_out, ci, ci_offset, pixel_buffer);
}
void ProcessingElement::processAllCHout(const channel_t ch_out,
const channel_t ci,
const weightaddr_t ci_offset,
const data_t pixels[9]) {
#pragma HLS INLINE off
L_CH_OUT:
for (channel_t co = 0; co < ch_out; co++) {
#pragma HLS LOOP_TRIPCOUNT min = 16 max = 1024 avg = 258
#pragma HLS unroll factor = N_PE
#pragma HLS PIPELINE II = 1
data_t result, weights_local[9];
#pragma HLS ARRAY_PARTITION variable = weights_local complete dim = 0
// fetch weights
WeightsCache::getNineWeights(co, ci_offset, weights_local);
// multiply-accumulate
macc2d(pixels, weights_local, result);
// save result to Output Buffer
if (ci == 0) {
OutputCache::setChannel(co, result);
} else {
OutputCache::accumulateChannel(co, result);
}
};
}
4.3 硬件相关
//load and loop all channel out weight MACC on pixel[9]
void ProcessingElement::processAllCHout(const channel_t ch_out,
const channel_t ci,
const weightaddr_t ci_offset,
const data_t pixels[9]) {
#pragma HLS INLINE off
L_CH_OUT:
for (channel_t co = 0; co < ch_out; co++) {
#pragma HLS LOOP_TRIPCOUNT min = 16 max = 1024 avg = 258
#pragma HLS unroll factor = N_PE
#pragma HLS PIPELINE II = 1
data_t result, weights_local[9];
注意展开的地方为N_PE是在processAllCHout函数之中。在for co的后面有个 #pragma HLS unroll factor = N_PE
即pixel[9]只加载一次到BRAM之中,在不同的PE实现MACC与OBRAM的累加。OBRAM只与Out_channel有关,所以加载一次pixel[9],然后送入并行的MACC,运算之后在OBRAM之中累加。
因此,每一个MACC模块都运行了每一个ci的pixel,但是不同的MACC模块运行了不同的co
data_t WeightsCache::WBRAM[N_PE][NUM_BRAMS_PER_PE][BLOCK_SIZE][9];
//ci_offset = ci * ch_out
PEID = co % N_PE;
blockID = (((ci_offset + co) / N_PE)) / BLOCK_SIZE;
rowID = (((ci_offset + co) / N_PE)) % BLOCK_SIZE;
weightID = 0;
WBRAM[PEID][blockID][rowID][weightID] = weight;
平均每个PE上有 co/N_PE个in_channel_num
至此,我们搞懂了zynqNet如何在DRAM与BRAM与processing Element之间搬运数据的,现在,在运行MTCNN时,我们就可以运用此步骤来实现。
---------------------
作者:邢翔瑞
来源:CSDN
原文:https://blog.csdn.net/weixin_36474809/article/details/83860624