作者:Shaoyi Chen,来源:AMD Xilinx开发者社区
本篇博客介绍VVAS框架所支持调用的H/W(HLS)内核。H/W内核指的是使用HLS工具生成的在FPGA部分执行的硬件功能模块。
HLS kernel创建
我们以smartcam的预处理作为例子,相关的代码可以在参考链接中找到。xf_pp_pipeline的作用是将输入图像的格式从NV12转换为BGR,再进行减均值和归一化操作。xf_pp_pipeline的实现基于HLS vision library。Vitis视觉库是为在Vitis开发环境中工作而设计的,它为在FPGA设备上加速的计算机视觉功能提供了一个软件接口。Vitis视觉库的功能大多与OpenCV的功能相似。更多的详细说明可以在参考链接中找到。
#include "xf_pp_pipeline_config.h" void pp_pipeline_accel(ap_uint* img_inp_y, // Y Input image pointer ap_uint * img_inp_uv, // UV Input image pointer ap_uint * img_out, // output image pointer float params[2 * XF_CHANNELS(IN_TYPE, NPC)], int in_img_width, int in_img_height, int in_img_linestride, int out_img_width, // Final Output image width int out_img_height, // Final Output image height int out_img_linestride) { // Final Output image line stride #pragma HLS INTERFACE m_axi port=img_inp_y offset=slave bundle=gmem1 #pragma HLS INTERFACE m_axi port=img_inp_uv offset=slave bundle=gmem2 #pragma HLS INTERFACE m_axi port=img_out offset=slave bundle=gmem3 #pragma HLS INTERFACE m_axi port=params offset=slave bundle=gmem4 #pragma HLS INTERFACE s_axilite port=in_img_width #pragma HLS INTERFACE s_axilite port=in_img_height #pragma HLS INTERFACE s_axilite port=in_img_linestride #pragma HLS INTERFACE s_axilite port=out_img_width #pragma HLS INTERFACE s_axilite port=out_img_height #pragma HLS INTERFACE s_axilite port=out_img_linestride #pragma HLS INTERFACE s_axilite port=return ...... xf::cv::resize (rgb_mat, resize_out_mat); xf::cv::preProcess (resize_out_mat, out_mat, params); ...... }
xf_pp_pipeline_accel.cpp作为硬件的一部分,需要将它和platform结合在一起。v++将HLS kernel打包为xo文件用于后续的硬件集成。
kv260_ispMipiRx_vcu_DP是smartcam应用使用的platform,xf_pp_pipeline.cpp打包成xo对象后,通过v++链接为完整的硬件工程并生成xclbin文件。完整的硬件框图如下图所示,红框部分为对应的HLS kernel。
Kernel调用
使用VVAS框架为xf_pp_pipeline.cpp编写自定义驱动是要实现四个函数,分别是xlnx_kernel_start、xlnx_kernel_done、xlnx_kernel_init、xlnx_kernel_deinit。
xlnx_kernel_init()函数读取json文件中的mean_r、mean_g、mean_b、scale_r、scale_g、scale_b。
int32_t xlnx_kernel_init(IVASKernel *handle){ ...... kernel_priv->mean_r = json_number_value(val); kernel_priv->mean_g = json_number_value(val); kernel_priv->mean_b = json_number_value(val); kernel_priv->scale_r = json_number_value(val); kernel_priv->scale_g = json_number_value(val); kernel_priv->scale_b = json_number_value(val); ...... }
xlnx_kernel_start()函数为HLS kernel配置参数。
int32_t xlnx_kernel_start(IVASKernel *handle, int start, IVASFrame *input[MAX_NUM_OBJECT], IVASFrame *output[MAX_NUM_OBJECT]) { ...... ivas_register_write(handle, &(input[0]->props.width), sizeof(uint32_t), 0x40); /* In width */ ivas_register_write(handle, &(input[0]->props.height), sizeof(uint32_t), 0x48); /* In height */ ivas_register_write(handle, &(input[0]->props.stride), sizeof(uint32_t), 0x50); /* In stride */ ivas_register_write(handle, &(output[0]->props.width), sizeof(uint32_t), 0x58); /* Out width */ ivas_register_write(handle, &(output[0]->props.height), sizeof(uint32_t), 0x60); /* Out height */ ivas_register_write(handle, &(output[0]->props.width), sizeof(uint32_t), 0x68); /* Out stride */ ivas_register_write(handle, &(input[0]->paddr[0]), sizeof(uint64_t), 0x10); /* Y Input */ ivas_register_write(handle, &(input[0]->paddr[1]), sizeof(uint64_t), 0x1C); /* UV Input */ ivas_register_write(handle, &(output[0]->paddr[0]), sizeof(uint64_t), 0x28); /* Output */ ivas_register_write(handle, &(kernel_priv->params->paddr[0]), sizeof(uint64_t), 0x34); /* Params */ ivas_register_write(handle, &start, sizeof(uint32_t), 0x0); /* start */ ...... }
xlnx_kernel_deinit()函数用来释放不需要的句柄。
uint32_t xlnx_kernel_deinit(IVASKernel *handle) { ResizeKernelPriv *kernel_priv; kernel_priv = (ResizeKernelPriv *)handle->kernel_priv; ivas_free_buffer (handle, kernel_priv->params); free(kernel_priv); return 0; }
xlnx_kernel_done()函数进行超时检测。
int32_t xlnx_kernel_done(IVASKernel *handle) { uint32_t val = 0, count = 0; do { ivas_register_read(handle, &val, sizeof(uint32_t), 0x0); /* start */ count++; if (count > 1000000) { printf("ERROR: kernel done wait TIME OUT !!\\n"); return 0; } } while (!(0x4 & val)); return 1; }
通过这四个函数就完成了VVAS自定义插件的设计。在smartcam应用运行时,通过命令行gst-launch-1.0 -v filesrc XXXXXX ! queue ! vvas_xmultisrc kconfig="/opt/xilinx/kv260-smartcam/share/vvas/facedetect/preprocess.json" ! XXXXXX完成插件的调用。
其中preprocess.json的内容为:
{ "xclbin-location":"/lib/firmware/xilinx/kv260-smartcam/kv260-smartcam.xclbin", "vvas-library-repo": "/opt/xilinx/kv260-smartcam/lib", "element-mode": "transform", "kernels": [ { "kernel-name": "pp_pipeline_accel:{pp_pipeline_accel_1}", "library-name": "libvvas_xpp.so", "config": { "debug_level" : 1, "mean_r": 123, "mean_g": 117, "mean_b": 104, "scale_r": 1, "scale_g": 1, "scale_b": 1 } } ] }
本文简要介绍了VVAS调用HLS生成的硬件加速器的主要流程,更多的细节可以参考VVAS手册。
参考链接:
https://github.com/Xilinx/kria-vitis-platforms
https://github.com/Xilinx/kria-vitis-platforms/blob/xlnx_rel_v2022.1/kv2...
https://xilinx.github.io/Vitis_Libraries/vision/2022.1/overview.html
https://xilinx.github.io/VVAS/main/build/html/docs/release_notes.html