Kria SOM 加速实现从算法到机器学习模型
judy 在 周三, 05/12/2021 - 10:41 提交
不久以前,从算法到现场机器学习( ML )模型仍然需要经历漫长而复杂的道路。对于一些企业而言,如果能够接触到具有神经网络部署经验的 ML 专家,则可能会有一些选择,但其开发工作却非常耗时。赛灵思依托 Vitis 统一软件平台以及近期推出的 KRIA SOM (System-on-Module),缩短了这一过程。
不久以前,从算法到现场机器学习( ML )模型仍然需要经历漫长而复杂的道路。对于一些企业而言,如果能够接触到具有神经网络部署经验的 ML 专家,则可能会有一些选择,但其开发工作却非常耗时。赛灵思依托 Vitis 统一软件平台以及近期推出的 KRIA SOM (System-on-Module),缩短了这一过程。