Zynq

基于ZYNQ的光纤-以太网高速传输系统设计

为满足合成孔径雷达实时成像、数据回放等高速可靠数据传输需求,解决传统数据传输系统由于接口要求高、体积与功耗大以及网络配置不灵活等原因不适合用于外场试验的问题,基于 ZYNQ 芯片设计一种光纤接口到以太网接口的数据传输系统。主要介绍数据传输流程的实现方法,并提出一种三级乒乓和指令并行的优化策略保证数据正确,提高传输速度

Zynq的启动与配置过程详解

初学 Zynq 的时候,都是按照惯例打开 Vivado 软件,然后实现 Zynq 可编程逻辑硬件部分PL的设置后,把硬件部署导出,再打开 SDK 进行 ARM 核的软件部分 PS 编程设计,最后再将硬件比特流文件(.bit)和软件的可执行链接文件(.elf)下载到 Zynq 开发板中,这样就可以对自己的软硬件设计进行调试和验证。

ZYNQ PS端IIC接口使用笔记

ZYNQ7000系列FPGA的PS自带两个IIC接口,接口PIN IO可扩展为EMIO形式即将IO约束到PL端符合电平标准的IO(BANK12、BANK13、BANK34、BANK35);SDK中需要对IIC接口进行初始化在黑金和米联的例程里为了方便用户使用,对IIC和外设设备分别创建了相应的文件方便用户开发。

万字长文理解吃透 Zynq 的定时器们

在ZYNQ的体系结构中定时器太丰富了,而大量的教程中基本就只玩了私有定时器,可以中断就OK了。其实在ZYNQ中定时器资源很丰富,每个CPU有自己的私有定时器和看门狗,有一个所有CPU共享的全局定时器和看门狗,两个三路定时器还有AXI_TIMER的IP可用,不过好像很少有博客把这些测试完。

ZYNQ中DMA与AXI4总线-DMA简介

在ZYNQ中,支持AXI-Lite,AXI4和AXI-Stream三种总线,但PS与PL之间的接口却只支持前两种,AXI-Stream只能在PL中实现,不能直接和PS相连,必须通过AXI-Lite或AXI4转接。PS与PL之间的物理接口有9个,包括4个AXI-GP接口和4个AXI-HP接口、1个AXI-ACP接口

Vivado中ZYNQ详解(主要用于PS和PL之间的工作衔接)

AXI(Advanced extensible Interface)协议主要描述了Master设备和Slave设备之间的数据传输方式,Master设备和Slave设备之间通过握手信号建立连接。当Slave设备的数据准备好时,会发出和维持VALID信号,表示数据有效;当Master设备准备好接收数据时,会发出READY信号。数据只有在这两个信号都有效时才开始传输。

AXI DMA详解与应用篇 | 第三讲、Data Cache与DMA一致性问题分析

在ZYNQ的PS侧存在Cache,CPU与DDR之间通过Cache进行交互,数据暂存在Data cache中,在处理器对DDR进行写数据操作时,如果不将数据通过Cache送入DDR,DDR中的数据不会变化。在进行DMA操作时,如果没有对Cache进行适当的操作,可能导致以下两种错误

MII2RGMII IP核使用设计举例

本例程将 PS 的 ETH1 通过 EMIO 方式引出, 通过 EMIO 引出的 ETH 为 GMII 接口, 将其与 GMII to RGMII IP 核连接后转换成 RGMII 接口,然后与外部子卡中的 88E1512 芯片连接。在 PS 端通过 SDK 自带的 lwip echo server 例程通过子卡,以 RJ45 电口与 PC 机实现 TCP 网络通信

基于ZYNQ的CameraLink图像采集与边缘检测开发详解

本案例支持CameraLink Base/Full模式、彩色/黑白相机。 此开发详解基于创龙ZYNQ Z-7045/Z-7100评估板TLZ7xH-EVM展开。

ZYNQ的ARM和FPGA数据交互——AXI交互最重要的细节

在Xinlinx的ZYNQ中,拥有ARM+FPGA这种架构,每款产品均带有双精度浮点的双核ARMCortex-A9MPCore处理系统,ARM(PS端)具有比较强的事务管理功能,可以用来跑界面以及应用程序等,其优势主要体现在控制方面,里面整合了很多现成的硬件资源供编程调用。FPGA(PL端)灵活性强,拥有更大的并行度和计算能力